FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]
For solved question bank visit doorsteptutor.com
[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

IEO Level 2- English Olympiad (SOF) Class 9 Coaching Programs

\checkmark (C) Online Tests (2 Tests [50
 Questions Each]): NTA Pattern, Analytics \& Explanations

Click Here to View \& Get Complete Material
[https://www.doorsteptutor.com/Exams /IEO-Level-2/Class-9/Online-TestSeries/]

Rs. 200.00
3 Year Validity (Multiple Devices)

Study Material (303 Notes): 20242025 Syllabus

Click Here to View \& Get Complete Material [https://www.doorsteptutor.com/Exams /IEO-Level-2/Class-9/Study-Material/]

Rs. 450.00
3 Year Validity (Multiple Devices)

Mathematics: Relations Functions Sets: Venn Diagram, Different of Sets and Complement of a Set

Venn Diagram

- British mathematician John Venn ($1834-1883 A D$) introduced the concept of diagrams to represent sets. According to him universal set is represented by the interior of a rectangle and other sets are represented by interior of circles.
- Diagrammatical representation of sets is known as a Venn diagram.

Example:
If $U=\{1,2,3,4,5\}, A=\{2,4\}$ and $B=\{1,3\}$, then these sets can be represented as the Venn diagram.

Solution:

Difference of Sets

Consider the sets

$$
A=\{1,2,3,4,5\} \text { And } B=\{2,4,6\} .
$$

A new set having those elements which are in ${ }_{\wedge}$ but not in ${ }_{\star}$ is said to be the difference of sets ${ }_{\wedge}$ and and it is denoted by $A-B . \therefore A-B=\{1,3,5\}$

Similarly, a set of those elements which are in ${ }^{\circ}$ but not in ${ }_{A}$ is said to be the difference of ${ }_{B}$ and , and it is devoted by $B-A . \therefore B-A=\{6\}$

In general, if ${ }_{\wedge}$ and ${ }_{n}$ are two sets then
$A-B=\{x: x \in A$ and $x \notin B\}$ and $B-A=\{x: x \in B$ and $x \notin A\}$
Difference of two sets can be represented using Venn diagram as:

Complement of a Set

Let ${ }_{x}$ denote the universal set and Y, Z its subsets where
$X=\{x: x$ is any member of a family
$Y=\{x: x$ is a male member of the family
$Z=\{x: x$ is a female member of the family

- $X-Y$ is a set having female members of the family.
- $X-Z$ is a set having male members of the family.
- $X-Y$ is said to be the complement of y_{Y} and is usally denoted by Y^{\prime} or Y^{c}.
- $X-Z$ is said to be complement of z and denoted by Z^{\prime} or z^{c}.

Example:
Let ${ }_{v}$ be the universal set and ${ }_{\wedge}$ its subset where

$$
\begin{aligned}
& U=\{x: x \in N \text { and } x \leqslant 10\} \\
& A=\{y: y \text { isaprime number less than } 10\}
\end{aligned}
$$

Find (i) A^{c} (ii) Represent a^{c} in Venn diagram.
Solution:
It is given

$$
\begin{aligned}
U= & \{1,2,3,4,5,6,7,8,9,10\} . \text { and } A=\{2,3,5,7\} \\
\text { i. } & A^{c}=U-A=\{1,4,6,8,9,10\}
\end{aligned}
$$

\square

Note:

- Difference of two sets can be found even if none is a subset of the other but complement of a set can be found only when the set is a subset of some universal set.
- $\psi^{C}=U$
- $U^{C}=\psi$

