FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com

[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Mathematics: Relations Functions Sets: Venn Diagram, Different of Sets and Complement of a Set

Venn Diagram

- British mathematician John Venn $(1834 1883 \, AD)$ introduced the concept of diagrams to represent sets. According to him universal set is represented by the interior of a rectangle and other sets are represented by interior of circles.
- Diagrammatical representation of sets is known as a Venn diagram.

Example:

If $U = \{1, 2, 3, 4, 5\}$, $A = \{2, 4\}$ and $B = \{1, 3\}$, then these sets can be represented as the Venn diagram.

Solution:

Difference of Sets

Consider the sets

$$A = \{1, 2, 3, 4, 5\}$$
 And $B = \{2, 4, 6\}$.

A new set having those elements which are in $_{A}$ but not in $_{A}$ is said to be the difference of sets $_{A}$ and $_{B}$ and it is denoted by A - B. $\therefore A - B = \{1, 3, 5\}$

Similarly, a set of those elements which are in $_{_{B}}$ but not in $_{_{A}}$ is said to be the difference of $_{_{B}}$ and $_{_{A}}$ and it is devoted by B-A. $\therefore B-A=\{6\}$

In general, if , and , are two sets then

$$A - B = \{x : x \in A \text{ and } x \notin B\} \text{ and } B - A = \{x : x \in B \text{ and } x \notin A\}$$

Difference of two sets can be represented using Venn diagram as:

Complement of a Set

Let $_x$ denote the universal set and $_{Y,Z}$ its subsets where

 $X = \{x : x \text{ is any member of a family }$

 $Y = \{x : x \text{ is a male member of the family }$

 $Z = \{x : x \text{ is a female member of the family }$

- X Y is a set having female members of the family.
- X Z is a set having male members of the family.
- X Y is said to be the complement of Y and is usally denoted by Y' or Y^c .
- X Z is said to be complement of z and denoted by z' or z^c .

Example:

Let __ be the universal set and _ its subset where

$$U = \{x : x \in N \text{and} x \le 10\}$$

 $A = \{y : y \mid saprime \text{ number less than } 10\}$

Find (i) A^c (ii) Represent A^c in Venn diagram.

Solution:

It is given

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 and $A = \{2, 3, 5, 7\}$
i. $A^c = U - A = \{1, 4, 6, 8, 9, 10\}$

Note:

• Difference of two sets can be found even if none is a subset of the other but complement of a set can be found only when the set is a subset of some universal set.

- $\psi^C = U$
- $U^C = \psi$