
FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Physics Class 12 NCERT Solutions: Chapter 14 Semiconductor Electronics Materials Devices and Simple Circuits Part 2

Doorsteptutor material for CBSE/Class-12 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Q: 9. For a CE-Transistor amplifier, the audio signal voltage across the collected resistance of $2k\Omega$ is 2ν . Suppose the current amplification factor of the transistor is $_{100}$, find the input signal voltage and base current, if the base resistance is $_{1k\Omega}$.

Collector resistance, $Rc = 2k\Omega = 2000\Omega$

Audio signal voltage across the collector resistance, V = 2V

Current amplification factor of the transistor, $\beta = 100$

Base resistance, $R_B = 1k\Omega = 1000\Omega$

Input signal voltage $= V_1$

Base current $= I_B$

We have the amplification relation as:

Voltage amplification $=\frac{V}{V_1}=\beta\frac{R_C}{R_B}$

$$V_i = \frac{VR_C}{\beta R_B}$$
$$= \frac{2 \times 1000}{100 \times 2000} = 0.01V$$

Therefore, the input signal voltage of the amplifier is 0.01V.

Base resistance is given by the relation:

$$R_B = \frac{V_i}{I_B}$$

$$= \frac{0.01}{1000} = 10 \times 10^{-6} \mu A$$

Therefore, the base current of the amplifier is $10\mu A$.

Q: 10. Two amplifiers are connected one after the other in series (cascaded). The first amplifier has a voltage gain of $_{10}$ and the second has a voltage gain of $_{20}$. If the input signal is $_{0.01}$ volt, calculate the output ac signal.

Answer:

Voltage gain of first amplifier, $V_1 = 10$

Voltage gain of second amplifier, $V_2 = 20$

Input signal voltage, $V_i = 0.01V$

Output AC signal voltage = V_o

The total voltage gain of a two-stage cascaded amplifier is given by the product of Voltage gains of both the stage, i.e.,

$$V = V_1 \times V_2$$
$$= 10 \times 20 = 200$$

We have the relation:

$$V = \frac{V_o}{V_i}$$

$$V_o = V \times V_i$$

$$= 200 \times 0.01 = 2V$$

Therefore, the output AC signal of the given amplifier is 2V.

Q: 11. A p-n photodiode is fabricated from a semiconductor with band gap of $2.8\,eV$. Can it detect a wavelength of $6000\,nm$?

Answer:

Energy band gap of the given photodiode, $E_g = 2.8 \, eV$

Wavelength, $\lambda = 6000 \, nm = 6000 \times 10^{-9} \, m$

The energy of a signal is given by the relation:

$$E = \frac{hc}{\lambda}$$

Where,

$$h = \text{Planck 's constant}$$

$$= 6.626 \times 10^{-34} J s$$

$$C = \text{Speed of light}$$

$$= 3 \times 10^8 m/s$$

$$E = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{6000 \times 10^{-9}}$$

But
$$1.6 \times 10^{-19} J = 1 \, eV$$

 $= 3.313 \times 10^{-20} J$

$$\therefore E = 3.313 \times 10^{-20} J$$
$$= \frac{3.313 \times 10^{-20}}{1.6 \times 10^{-19}} = 0.207 \, eV$$

The energy of a signal of wavelength $6000\,nm$ is $0.207\,eV$, which is less than $2.8\,eV-$ the energy band gap of a photodiode. Hence, the photodiode cannot detect the signal.