FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 11 Physics Solutions: Chapter 14 – Oscillations-Part 2

Glide to success with Doorsteptutor material for CBSE/Class-7: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-7/]- for all subjects of CBSE/Class-7.

Question 14.3:

Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?

Answer:

(b) and (d) Are periodic

Explanation:

(a)

It is not a periodic motion. This represents a unidirectional, linear uniform motion. There is no repetition of motion in this case.

(b)

In this case, the motion of the particle repeats itself after 2s. Hence, it is a periodic motion, having a period of 2s.

(c)

It is not a periodic motion. This is because the particle repeats the motion in one position only. For a periodic motion, the entire motion of the particle must be repeated in equal intervals of time.

(*d*)

In this case, the motion of the particle repeats itself after $_{2s}$. Hence, it is a periodic motion, having a period of $_{2s}$.

Question 14.4:

Which of the following functions of time represent,

- (a) Simple harmonic,
- (b) Periodic but not simple harmonic, and
- (c) Non-periodic motion?

Give period for each case of periodic motion (, is any positive constant):

- $(a) \sin \omega t \cos \omega t$
- $(b) \sin^3 \omega t$

$$(c) 3 \cos\left(\frac{\pi}{4} - 2\omega t\right)$$

- $(d)\cos\omega t + \cos 3\omega t + \cos 5\omega t$
- $(e) \exp(-\omega^2 t^2)$
- (f) 1 + ωt + $\omega^2 t^2$

Answer:

(a) : Simple harmonic motion

Explanation:

The given function is:

$$\sin \omega t - \cos \omega t$$

$$= \sqrt{2} \left[\frac{1}{\sqrt{2}} \sin \omega t - \frac{1}{\sqrt{2}} \cos \omega t \right]$$
$$= \sqrt{2} \left[\sin \omega t \times \cos \frac{\pi}{4} - \cos \omega t \times \sin \frac{\pi}{4} \right]$$
$$= \sqrt{2} \sin \left(\omega t - \frac{\pi}{4} \right)$$

This function represents SHM as it can be written in the form:

$$a\sin(\omega t + \phi)$$

Its period is: $\frac{2\pi}{\omega}$

(b) :

Periodic, but not Simple harmonic motion

Explanation:

The given function is:

$$\sin^3 \omega t$$

$$= \frac{1}{2} [3 \sin \omega t - \sin 3\omega t]$$

The terms $\sin \omega t$ and $\sin \omega t$ individually represent simple harmonic motion.

However, the superposition of two simple harmonic motion is periodic and not simple harmonic.

(c):

Simple harmonic motion.

Explanation:

The given function is:

$$3\cos\left[\frac{\pi}{4}-2\omega t\right]$$

$$=3\cos\left[2\omega t-\frac{\pi}{4}\right]$$

This function represents simple harmonic motion because it can be written in the form:

$$a\cos(\omega t + \phi)$$

Its period is: $\frac{2\pi}{2\omega} = \frac{\pi}{\omega}$

(d): Periodic, but not simple harmonic motion

Explanation:

The given function is $\cos \omega t + \cos 3\omega t + \cos 5\omega t$. Each individual cosine function represents simple harmonic motion. However, the superposition of three simple harmonic motions is periodic, but not simple harmonic.

(e) : Non-periodic motion

Explanation:

The given function $\exp(-\omega^2 t^2)$ is an exponential function. Exponential functions do not repeat themselves. Therefore, it is a non-periodic motion.

(f):

The given function $1 + \omega t + \omega^2 t^2$ is non-periodic.