FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Areas of Parallelograms and Triangles (Chapter 9) Exercise 9.2 - Part 1

Glide to success with Doorsteptutor material for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

b

Q-1 In the figure, ABCD is a parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$.

Solution:
Given,

- ABCD is a parallelogram, $A E \perp D C$ and $C F \perp A D$
- Also $A B=C D=16 \mathrm{~cm}$ (opposite side of a parallelogram)
- $C F=10 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$

Now, Area of parallelogram $=$ Base \times Altitide

- $C D \times A E=A D($ base $) \times C F($ Altitide $)(\because$ Area of parallelogram $=$ base \times height $)$
- $16 \times 8=A D \times 10(A B=C D=16 \mathrm{~cm})$
- $128=10 A D$
- $A D=12.8 \mathrm{~cm}$

Q-2 If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that ar $(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$.

Solution:

- Given, E, F, G and H are respectively the mid-point of the sides of a parallelogram ABCD
- To prove, $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$
- Construction, H and F are joined.

Proof,

- $A D \| B C$ and $A D=B C$ (opposite sides of a parallelogram) so $\frac{1}{2} A D=\frac{1}{2} B C$
- Also, $A H \| B F$ and $D H \| C F$ therefore $A H=B F$ and $D H=C F$ (H and F are mid points) Thus, ABFH and HFCD are parallelograms.
- Now, $\triangle E F H$ And parallelogram ABFH lie on the same base FH and between the same parallel lines AB and HF.
- So, area of $E F H=\frac{1}{2}$ area of ABFH ... equation (1) (this is because area of triangle is $\frac{1}{2} b h$ and area of parallelogram is ${ }_{b h}$ and the triangle and parallelogram share same base and height),
- Similarly, area of $G H F=\frac{1}{2}$ area of HFCD ... equation (2)

Adding equation (1) and (2)

- Area of $\triangle E F H+$ area of $\triangle G H F=\frac{1}{2}$ area of $A B F H+\frac{1}{2}$ area of HFCD
- Area of $\mathrm{EFGH}=\frac{1}{2}$ [area of $\mathrm{ABFH}+$ area of HFCD$]$
- Area $(E F G H)=\frac{1}{2} \operatorname{area}(A B C D)(\because A B F H+H F C D=A B C D)$
- $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$

