FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Quadrilaterals (Chapter 8) Exercise 8.1 Part 5

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Quadrilateral Classification Chapt

§h2pe	Characteristic	N^2me
	No parallel sides	Trapezium
	Exactly one pair of parallel sides	Trapezoid
	Two pairs of parallel sides	Parallelogram
	Parallelogram with congruent sides	Rhombus
	Parallelogram with right angles	Rectangle
	Rectangle with congruent sides	Square
Note that squares, rectangles, and rhombuses are types of parallelograms and that a square is a type of rectangle and a type of rhombus.		

Q-9 In parallelogram ABCD , two points P and Q are taken on diagonal BD such that $D P=B Q$ (see Fig.) . Show that:

1. $\triangle A P D \cong \triangle C Q B$
2. $A P=C Q$
3. $\triangle A Q B \cong \triangle C P D$
4. $A Q=C P$
5. APCQ is a parallelogram

Solution:

1. In $\triangle \mathrm{APD}$ and $\triangle C Q B$,
2. $D P=B Q$ (Given)
3. $\angle A D P=\angle C B Q$ (Alternate interior angles)
4. $A D=B C$ (Opposite sides of a parallelogram)

Thus, $\triangle A P D \cong \triangle C Q B$ by Side-Angle-Side congruence condition.

1. $A P=C Q$ By Corresponding parts of congruent triangles as $\triangle A P D \cong \triangle C Q B$.
2. In $\triangle \mathrm{AQB}$ and $\triangle C P D$,
3. $B Q=D P$ (Given)
4. $\angle A B Q=\angle C D P$ (Alternate interior angles)
5. $\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram)

Thus, $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$ by Side-Angle-Side congruence condition.

1. $A Q=C P$ By Corresponding Parts of Congruent Triangles as $\triangle A Q B \cong \triangle C P D$.
2. The diagonal of a parallelogram bisect each other.
3. $O B+O D$
4. $O B-B Q=O D-D P \mid B Q=D P$ Given
5. $O Q=O P$... equation (1)

Also, $O A=O C$... equation (2) (diagonal of a parallelogram bisect each other)
From equation (1) and (2) , APCQ is parallelogram
Q-10 ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on on diagonal BD (see Fig.) . Show that

1. $\triangle A P B \cong \triangle C Q D$
2. $A P=C Q$

Solution:
Given,

- ABCD is parallelogram
- AP and CQ are perpendiculars from A and C on diagonal BD

Solution (i)
In $\triangle A P B$ and $\triangle C Q D$,

- $A B=C D$ (Opposite side of parallelogram ABCD)
- $\angle A B P=\angle C D Q$ (Alternate interior angles)
- $\therefore A B \| D C$

Now,

- $\angle A P B=\angle C Q D$ (Equal to right angles as AP and CQ are perpendiculars)
- $A B=C D(\mathrm{ABCD}$ is a parallelogram)
- Thus, $\triangle A P B \cong \triangle C Q D$ by Angle-Angle-Side congruence condition.

Solution (ii)
$A P=C Q$ by Corresponding Parts of Congruent Triangles as $\triangle A P B \cong \triangle C Q D$.

