FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Triangles (Chapter 7) Exercise 7.3 - Part 3
Glide to success with Doorsteptutor material for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Altitude of triangle

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to (i.e.. forming a right angle with) a line containing the base (the opposite side of the triangle). This line containing the opposite side is called the extended base of the altitude.

Q-4 BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle $A B C$ is isosceles

Solution:

Given, BE and CF are two equal altitudes.

- In $\triangle B E C$ and $\triangle C F B, \angle B E C=\angle C F B=90^{\circ}$ (Altitudes) $B C=C B$ (Common) $B E=C F$ (Common)
- Therefore, $\triangle B E C \cong \triangle C F B$ by RHS congruence condition.
- Now, $\angle C=\angle B$ (by Corresponding Parts of Congruent Triangles) Thus, $A B=A C$ as sides opposite to the equal angles are equal.

Q-5 ABC is an isosceles triangle with $A B=A C$. Draw $A P \perp B C$ to show that $\angle B=\angle C$.
Solution:

- Given,

$$
A B=A C
$$

In $\triangle \mathrm{ABP}$ and $\triangle A C P, \angle A P B=\angle A P C=90^{\circ}$ (AP is altitude) $A B=A C$ (Given) $A P=A P$ (Common line)

- Therefore, $\triangle A B P \cong \triangle A C P$ by Right Angle-Hypostenuse-Side congruence condition.
- Thus, $\angle B=\angle C$ (by Corresponding Parts of Congruent Triangles)

