FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Triangles (Chapter 7) Exercise 7.3 – Part 3

Glide to success with Doorsteptutor material for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Altitude of triangle

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to (i.e., forming a right angle with) a line containing the base (the opposite side of the triangle). This line containing the opposite side is called the extended base of the altitude.

Q-4 BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles

Solution:

Given, BE and CF are two equal altitudes.

- In $\triangle BEC$ and $\triangle CFB$, $\angle BEC = \angle CFB = 90^{\circ}$ (Altitudes) BC = CB (Common) BE = CF (Common)
- Therefore, $\Delta BEC \cong \Delta CFB$ by RHS congruence condition.
- Now, $\angle C = \angle B$ (by Corresponding Parts of Congruent Triangles) Thus, AB = AC as sides opposite to the equal angles are equal.

Q-5 ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.

Solution:

• Given,

In \triangle ABP and \triangle ACP, \angle APB = \angle APC = 90° (AP is altitude) AB = AC (Given) AP = AP (Common line)

- Therefore, $\triangle ABP \cong \triangle ACP$ by Right Angle-Hypostenuse-Side congruence condition.
- Thus, $\angle B = \angle C$ (by Corresponding Parts of Congruent Triangles)