FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace YouTube Channel [https://youtube.com/c/Examrace/]</u>

NCERT Class 9 Solutions: Triangles (Chapter 7) Exercise 7.3 – Part 1

Glide to success with Doorsteptutor material for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Corresponding Parts of Congruent Triangle (CPCT)

CPCT means that the corresponding sides are equal and the corresponding angles are equal.

Q-1 ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig) . If AD is extended to intersect BC at P, show that

- 1. $\triangle ABD \cong \triangle ACD$
- 2. $\triangle ABP \cong \triangle ACP$
- 3. AP bisects $\angle A$ as well as $\angle D$.
- 4. AP is the perpendicular bisector of BC.

Given, $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles.

1. In $\triangle ABD \cong \triangle ACD \ AD = AD$ (Common line) AB = AC ($\triangle ABC$ is isosceles) BD = CD ($\triangle DBC$ is isosceles)

Therefore, $\triangle ABD \cong \triangle ACD$ by SSS congruence condition

- 1. In $\triangle ABP \cong \triangle ACP \ AP = AP$ (Common line) $\angle PAB = \angle PAC$ ($\triangle ABD \cong \triangle ACD$ so by CPCT) AB = AC ($\triangle ABC$ is isosceles) Therefore, $\triangle ABP \cong \triangle ACP$ by SAS congruence condition.
- 2. $\angle PAB = \angle PAC$ by Corresponding Parts of Congruent Triangles as $\triangle ABD \cong \triangle ACD$. AP bisects $\triangle ABD = \triangle AB$

also, In $\triangle BPD$ and $\triangle CPD$, PD = PD (Common line) BD = CD ($\triangle DBC$ is isosceles.) BP = CP ($\triangle ABP \cong \triangle ACP$ so by Corresponding Parts of Congruent Triangle (CPCT)).

Therefore, $\Delta BPD \cong \Delta CPD$ by SSS congruence condition.

Thus, $\angle BDP = \angle CDP$ by CPCT ... equation (2) By (1) and (2) we can say that AP bisects $\angle A$ as well as $\angle D$.

1. $\angle BPD = \angle CPD$ (by CPCT as $\triangle BPD \cong \triangle CPD$) and BP = CP ... equation (3) also, $\angle BPD + \angle CPD = 180^{\circ}$ (BC is a straight line.) $\Rightarrow 2\angle BPD = 180^{\circ}$ $\Rightarrow \angle BPD = 90^{\circ}$... equation (3)

From (1) and (2),

AP is the perpendicular bisector of BC.