FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Triangles (Chapter 7) Exercise 7.3 - Part 1

Glide to success with Doorsteptutor material for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Corresponding Parts of Congruent Triangle (CPCT)

CPCT means that the corresponding sides are equal and the corresponding angles are equal.
Q-1 $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see Fig). If $A D$ is extended to intersect $B C$ at P, show that

1. $\triangle A B D \cong \triangle A C D$
2. $\triangle A B P \cong \triangle A C P$
3. AP bisects $\angle A$ as well as $\angle D$
4. AP is the perpendicular bisector of BC.

Solution:

Given, $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles.

1. In $\triangle A B D \cong \triangle A C D A D=A D$ (Common line) $A B=A C$ ($\triangle A B C$ is isosceles) $B D=C D(\triangle D B C$ is isosceles)

Therefore, $\triangle A B D \cong \triangle A C D$ by SSS congruence condition

1. In $\triangle A B P \cong \triangle A C P A P=A P$ (Common line) $\angle P A B=\angle P A C$ ($\triangle A B D \cong \triangle A C D$ so by CPCT) $A B=A C$ ($\triangle A B C$ is isosceles) Therefore, $\triangle A B P \cong \triangle A C P$ by SAS congruence condition.
2. $\angle P A B=\angle P A C$ by Corresponding Parts of Congruent Triangles as $\triangle A B D \cong \triangle A C D$. AP bisects $\angle A$... equation (1)
also, In $\triangle B P D$ and $\triangle C P D, P D=P D$ (Common line) $B D=C D$ ($\triangle D B C$ is isosceles.) $B P=C P$ ($\triangle A B P \cong \triangle A C P$ so by Corresponding Parts of Congruent Triangle (CPCT)) .

Therefore, $\triangle B P D \cong \triangle C P D$ by SSS congruence condition.
Thus, $\angle B D P=\angle C D P$ by CPCT ... equation (2) By (1) and (2) we can say that AP bisects $\angle A$ as well as $\angle D$.

1. $\angle B P D=\angle C P D$ (by CPCT as $\triangle B P D \cong \triangle C P D$) and $B P=C P$... equation (3) also, $\angle B P D+\angle C P D=180^{\circ}$ (BC is a straight line.)

$$
\Rightarrow 2 \angle B P D=180^{\circ}
$$

$$
\Rightarrow \angle B P D=90^{\circ} \ldots \text { equation (3) }
$$

From (1) and (2),
$A P$ is the perpendicular bisector of $B C$.

