FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Line and Angles (Chapter 6) Exercise 6.3 Part 1

Doorsteptutor material for CBSE/Class-9 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Q-1 In the figure, sides QP and RQ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Solution:
Given, $\triangle P Q R$ sides QP and RQ

$$
\angle S P R=135^{\circ} \text { and } \angle P Q T=110^{\circ}
$$

Now,

$$
\begin{aligned}
& \angle S P R+\angle Q P R=180^{\circ} \quad(\mathrm{SQ} \text { is a straight line) } \\
& \Rightarrow 135^{\circ}+\angle Q P R=180^{\circ} \Rightarrow \angle Q P R=45^{\circ}
\end{aligned}
$$

Also,
$\angle P Q T+\angle P Q R=180^{\circ}$ (TR is a straight line)

$$
\Rightarrow 110^{\circ}+\angle P Q R=180^{\circ} \Rightarrow \angle P Q R=70^{\circ}
$$

Now,
$\angle P Q R+\angle Q P R+\angle P R Q=180^{\circ}$ (Sum of the interior angles of the triangle)

$$
\Rightarrow 70^{\circ}+45^{\circ}+\angle P R Q=180^{\circ} \Rightarrow 115^{\circ}+\angle P R Q=180^{\circ} \Rightarrow \angle P R Q=65^{\circ}
$$

Q-2 In the figure, $\angle X Y Z=54^{\circ}$. If $Y O$ and $Z 0$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.

Solution:
Given, $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$
YO and ZO are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively.

Now,
$\angle Y X Z+\angle X Y Z+\angle X Z Y=180^{\circ}$ (Sum of the interior angles of the triangle)

$$
\Rightarrow 62^{\circ}+54^{\circ}+\angle X Z Y=180^{\circ} \Rightarrow 116^{\circ}+\angle X Z Y=180^{\circ} \Rightarrow \angle X Z Y=64^{\circ}
$$

Now,
$\angle O Z Y=\frac{1}{2} \angle X Z Y$ (ZO is the bisector) $\Rightarrow \angle O Z Y=\frac{1}{2}\left(64^{\circ}\right)=32^{\circ}$
Also,
$\angle O Y Z=\frac{1}{2} \angle X Y Z$ (YO is the bisector)

$$
\Rightarrow \angle O Y Z=\frac{1}{2}\left(54^{\circ}\right)=27^{\circ}
$$

Now,
$\angle O Z Y+\angle O Y Z+\angle O=180^{\circ}$ (Sum of the interior angles of the triangle)

$$
\Rightarrow 32^{\circ}+27^{\circ}+\angle O=180^{\circ} \Rightarrow 59^{\circ}+\angle O=180^{\circ} \Rightarrow \angle O=121^{\circ}
$$

