FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace YouTube Channel [https://youtube.com/c/Examrace/]</u>

NCERT Class 9 Solutions: Line and Angles (Chapter 6) Exercise 6.3 – Part 1

Doorsteptutor material for CBSE/Class-9 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Q-1 In the figure, sides QP and RQ of $\triangle PQR$ are produced to points S and T respectively. If $\triangle SPR = 135^{\circ}$ and $\triangle PQT = 110^{\circ}$, find $\triangle PRQ$.

Solution:

Given, ΔPQR sides QP and RQ

$$\angle SPR = 135^{\circ} \text{ and } \angle PQT = 110^{\circ}$$

Now,

$$\angle SPR + \angle QPR = 180^{\circ}$$
 (SQ is a straight line)
 $\Rightarrow 135^{\circ} + \angle QPR = 180^{\circ} \Rightarrow \angle QPR = 45^{\circ}$

Also,

$$\angle PQT + \angle PQR = 180^{\circ}$$
 (TR is a straight line)
 $\Rightarrow 110^{\circ} + \angle PQR = 180^{\circ} \Rightarrow \angle PQR = 70^{\circ}$

Now,

$$\angle PQR + \angle QPR + \angle PRQ = 180^{\circ}$$
 (Sum of the interior angles of the triangle)
 $\Rightarrow 70^{\circ} + 45^{\circ} + \angle PRQ = 180^{\circ} \Rightarrow 115^{\circ} + \angle PRQ = 180^{\circ} \Rightarrow \angle PRQ = 65^{\circ}$

Q-2 In the figure, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\triangle DZY$ and $\triangle YDZ$.

Solution:

Given,
$$\angle X = 62^{\circ}$$
, $\angle XYZ = 54^{\circ}$

YO and ZO are the bisectors of $\angle xyz$ and $\angle xzy$ respectively.

Now,

$$\angle YXZ + \angle XYZ + \angle XZY = 180^{\circ}$$
 (Sum of the interior angles of the triangle)
 $\Rightarrow 62^{\circ} + 54^{\circ} + \angle XZY = 180^{\circ} \Rightarrow 116^{\circ} + \angle XZY = 180^{\circ} \Rightarrow \angle XZY = 64^{\circ}$

Now,

$$\angle OZY = \frac{1}{2} \angle XZY$$
 (Z0 is the bisector) $\Rightarrow \angle OZY = \frac{1}{2}(64^\circ) = 32^\circ$

Also,

$$\triangle OYZ = \frac{1}{2} \angle XYZ$$
 (Y0 is the bisector)

$$\Rightarrow \angle OYZ = \frac{1}{2}(54^{\circ}) = 27^{\circ}$$

Now,

$$\angle OZY + \angle OYZ + \angle O = 180^\circ$$
 (Sum of the interior angles of the triangle)
 $\Rightarrow 32^\circ + 27^\circ + \angle O = 180^\circ \Rightarrow 59^\circ + \angle O = 180^\circ \Rightarrow \angle O = 121^\circ$