FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.8 Part 1
Get unlimited access to the best preparation resource for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

- Volume $=\frac{4}{3} \pi r^{3}$

- General Formula for Volume of sphere
- R is radius
- By rearranging the above formula, you can find the radius:

- Radius $=\sqrt[3]{\frac{3 v}{4 \pi}}$

Q-1 Find the volume of a sphere whose radius is

1. 7 cm
2. 0.63 m

Solution:

1. Radius of the sphere $(r)=7 \mathrm{~cm}$

So, Volume of the sphere

- $=\frac{4}{3} \pi r^{3}$
- $=\left(\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7\right) \mathrm{cm}^{3}$
- $=\frac{4312}{3} \mathrm{~cm}^{3}$
- $=1437.33 \mathrm{~cm}^{2}$
- Radius of the sphere $(r)=0.63 m$

Volume of the sphere

- $=\frac{4}{3} \pi r^{3}$
- $=\left(\frac{4}{3} \times \frac{22}{7} \times 0.63 \times 0.63 \times 0.63\right) \mathrm{m}^{3}$
- $=1.05 m^{3}$

Q-2 Find the amount of water displaced by a solid spherical ball of diameter.

1. 28 cm
2. 0.21 m

Solution:

1. Spherical ball's diameter is $=28 \mathrm{~cm}$

Radius $=\frac{28}{2} \mathrm{~cm}=14 \mathrm{~cm}$
Amount of water displaced by the spherical ball = Volume of the ball

- $=\frac{4}{3} \pi r^{3}$
- $=\left(\frac{4}{3} \times \frac{22}{7} \times 14 \times 14 \times 14\right) \mathrm{cm}^{3}$
- $=\frac{34496}{3} \mathrm{~cm}^{3}$
- $=1498.66 \mathrm{~cm}^{3}$

1. The spherical ball's diameter $=0.21 \mathrm{~m}$

Radius $(r)=\frac{0.21}{2} m=0.105 m$
Amount of water displaced by the spherical ball = Volume of the ball

- $=\frac{4}{3} \pi r^{3}$
- $=\left(\frac{4}{3} \times \frac{22}{7} \times 0.105 \times 0.105 \times 0.105\right) m^{3}$
- $=0.004851 \mathrm{~m}^{3}$

Q-3 The diameter of a metallic ball is 4.2 cm . What is the mass of the ball, if the density of the metal is 8.9 g per cm^{3} ?
Solution:

- Diameter of the ball $=4.2 \mathrm{~cm}$
- Radius $=\left(\frac{4.2}{2}\right) \mathrm{cm}=2.1 \mathrm{~cm}\left(\because\right.$ radius $\left.=\frac{\text { diameter }}{2}\right)$

Volume of the ball

- $=\frac{4}{3} \pi r^{3}$
- $=\left(\frac{4}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 2.1\right) \mathrm{cm}^{3}$
- $=38.808 \mathrm{~cm}^{3}$

Density of the metal is $8.9 \mathrm{~g} \mathrm{per} \mathrm{cm}^{3}$
Therefore, mass of the ball $=(38.808 \times 8.9) g=345.3912 g$

