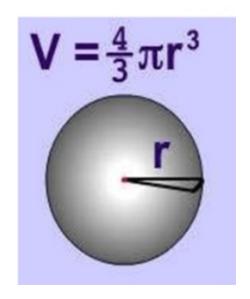
FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace</u>


YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.8 – Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

- Volume= $\frac{4}{3}\pi r^3$
- General Formula for Volume of sphere
- R is radius
- By rearranging the above formula, you can find the radius:

■ Radius=
$$\sqrt[3]{\frac{3v}{4\pi}}$$

Q-1 Find the volume of a sphere whose radius is

- 1. 7 cm
- 2. 0.63m

Solution:

1. Radius of the sphere (r) = 7 cm

So, Volume of the sphere

$$\bullet = \frac{4}{3}\pi r^3$$

• =
$$\left(\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7\right) cm^3$$

$$\bullet = \frac{4312}{3} cm^3$$

• = $1437.33cm^2$

• Radius of the sphere (r) = 0.63m

Volume of the sphere

$$\bullet = \frac{4}{3}\pi r^3$$

• =
$$\left(\frac{4}{3} \times \frac{22}{7} \times 0.63 \times 0.63 \times 0.63\right) m^3$$

• =
$$1.05m^3$$

Q-2 Find the amount of water displaced by a solid spherical ball of diameter.

- 1. 28 cm
- 2. 0.21*m*

Solution:

1. Spherical ball's diameter is = 28 cm

Radius
$$=\frac{28}{2}cm = 14 cm$$

Amount of water displaced by the spherical ball = Volume of the ball

$$\bullet = \frac{4}{3}\pi r^3$$

• =
$$\left(\frac{4}{3} \times \frac{22}{7} \times 14 \times 14 \times 14\right) cm^3$$

$$\bullet = \frac{34496}{3} cm^3$$

- \bullet = 1498.66cm³
 - 1. The spherical ball's diameter = 0.21m

Radius
$$(r) = \frac{0.21}{2}m = 0.105m$$

Amount of water displaced by the spherical ball = Volume of the ball

$$\bullet = \frac{4}{3}\pi r^3$$

• =
$$\left(\frac{4}{3} \times \frac{22}{7} \times 0.105 \times 0.105 \times 0.105\right) m^3$$

 \bullet = 0.004851 m^3

Q-3 The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of the metal is $8.9 g \ per \ cm^3$?

Solution

• Diameter of the ball = 4.2 cm

• Radius =
$$\left(\frac{4.2}{2}\right) cm = 2.1 cm \left(\because \text{ radius} = \frac{\text{diameter}}{2}\right)$$

Volume of the ball

$$\bullet = \frac{4}{3}\pi r^3$$

• =
$$\left(\frac{4}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 2.1\right) cm^3$$

• = $38.808cm^3$

Density of the metal is 8.9g per cm³

Therefore, mass of the ball = $(38.808 \times 8.9) g = 345.3912g$