FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13)

Exercise 13.7 - Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

- Area of base $=\pi \mathrm{r}^{2}$
\therefore volume of a cone $=1 / 3 \times \pi r^{2} x h$

$=1 / 3 \pi r^{2} h$

By the Pythagoras theorem, $(\text { Slant height })^{2}=(\text { Radius })^{2}+(\text { Height })^{2}$
Q-1 Find the volume of the right circular cone with

1. Radius 6 cm , height 7 cm
2. Radius 3.5 cm , height 12 cm

Solution:

1. Radius $(r)=6 \mathrm{~cm}$, Height $(h)=7 \mathrm{~cm}$, Therefore, volume of the cone
2. $=\frac{1}{3} \pi r^{2} h$
3. $=\left(\frac{1}{3} \times \frac{22}{7} \times 6 \times 6 \times 7\right) \mathrm{cm}^{3}$
4. $=264 \mathrm{~cm}^{3}$
5. Radius $(r)=3.5 \mathrm{~cm}$, Height $(h)=12 \mathrm{~cm}$, Volume of the cone
6. $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& \text { 7. }=\left(\frac{1}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 12\right) \mathrm{cm}^{3} \\
& \text { 8. }=154 \mathrm{~cm}^{3}
\end{aligned}
$$

Q-2 Find the capacity in liters of a conical vessel with

1. Radius 7 cm , slant height 25 cm
2. Height 12 cm , slant height 13 cm

Solution:

Radius $(r)=7 \mathrm{~cm}$, Slant height $(l)=25 \mathrm{~cm}$, Consider the height of the conical vessel . Then by applying Pythagoras theorem,

$$
\begin{aligned}
& h=\sqrt{l^{2}-r^{2}} \\
& \Rightarrow h=\sqrt{25^{2}-7^{2}} \\
& \Rightarrow h=\sqrt{625-49} \\
& \Rightarrow h=\sqrt{576} \\
& \Rightarrow h=24 \mathrm{~cm}
\end{aligned}
$$

Now, volume of the cone

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h \\
& =\left(\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24\right) \mathrm{cm}^{3} \\
& =1232 \mathrm{~cm}^{3}
\end{aligned}
$$

Therefore, capacity of the vessel $=\left(\frac{1232}{1000}\right) l=1.232 l$
Height $(h)=12 \mathrm{~cm}$, Slant height $(l)=13 \mathrm{~cm}$, Consider the radius of the conical vessel. Again, using Pythagoras theorem,

$$
\begin{aligned}
& r=\sqrt{l^{2}-h^{2}} \\
& r=\sqrt{13^{2}-12^{2}} \\
& r=\sqrt{169-144} \\
& r=\sqrt{25} \\
& r=5 \mathrm{~cm}
\end{aligned}
$$

Volume of the cone

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h \\
& =\left(\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 12\right) \mathrm{cm}^{3} \\
& =\left(\frac{2200}{7}\right) \mathrm{cm}^{3}
\end{aligned}
$$

Therefore, capacity of the vessel $=\left(\frac{2200}{7000}\right) l=\frac{11}{35} l, 1 l=1000 \mathrm{~cm}^{3}$

