FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.6 - Part 3

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Sphere

Rectangular Prism

$$
V=l w h \text { or } V=B h
$$

Right Circular Cylinder

Right Square Pyramid

Q-6 The capacity of a closed cylindrical vessel of height ${ }_{1 m}$ is 15.4 liters. How many square meters of metal sheet would be needed to make it?

Solution:

- Consider the radius of the cylinder to be
- Height (h) of cylindrical vessel is ${ }_{1 m}$
- Since 1 cubic meter $=1000$ liter. Therefore, volume of cylindrical vessel $=15.4$ liters $=0.0154 \mathrm{~m}^{3}$
- $\Rightarrow \pi r^{2} h=0.0154$
- $\Rightarrow\left(\frac{22}{7} \times r^{2} \times 1\right) m=(0.0154) m^{3}$
- $\Rightarrow r^{2}=\frac{0.0154 \times 7}{22}$
- $\Rightarrow r^{2}=\frac{0.1078}{22}$
- $\Rightarrow r^{2}=0.0049$
- $\Rightarrow r=\sqrt{0.0049}$
- $\Rightarrow r=0.07$

So, the radius of the base of vessel $=0.07 \mathrm{~m}$
Total surface area of the cylindrical vessel

- $=2 \pi r(h+r)$
- $=2 \times \frac{22}{7} \times 0.07(1+0.07)$
- $=2 \times \frac{22}{7} \times 0.07$ (1.07)
- $=\frac{3.2956}{7}$
- $=0.4708 m^{2}$

So, $0.4708 m^{2}$ of the metal sheet would be required to make the cylindrical vessel.
Q-7 A lead pencil consist of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of the graphite is 1 mm . If the length of the pencil is 14 cm , find the volume of the wood and that of the graphite.

Solution:

- Diameter of the graphite cylinder $=1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}$
- Radius $=\frac{1}{20} c m\left(\because\right.$ radius $\left.=\frac{\text { diameter }}{2}\right)$
- Length of graphite $=14 \mathrm{~cm}$

Volume of the graphite cylinder $=\pi r^{2} h$

- $=\left(\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 14\right) \mathrm{cm}^{3}$
- $=0.11 \mathrm{~cm}^{3}$

Diameter of the pencil $=7 \mathrm{~mm}=\frac{7}{10} \mathrm{~cm}$

- Therefore, radius $=\frac{7}{20} c m\left(\because\right.$ radius $\left.=\frac{\text { diameter }}{2}\right)$
- Length of pencil $=14 \mathrm{~cm}$

Volume of the pencil $=\pi r^{2} h$

- $\left(\frac{22}{7} \times \frac{7}{20} \times \frac{7}{20} \times 14\right) \mathrm{cm}^{3}$
- $5.39 \mathrm{~cm}^{2}$

Now pencil has wood and graphite, therefore volume of wood = volume of the pencil - volume of the graphite

- $(5.39-0.11) \mathrm{cm}^{3}$
- $5.28 \mathrm{~cm}^{3}$

Q-8 A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm . If the bowl is filled with soup to a height of 4 cm , how much soup the hospital has to prepare daily to serve 250 patients?

Solution:

- Diameter of the cylindrical bowl $=7 \mathrm{~cm}$
- Therefore, radius $=\frac{7}{2} c m\left(\because\right.$ radius $\left.=\frac{\text { diameter }}{2}\right)$
- Height of serving bowl $=4 \mathrm{~cm}$

So, soup saved in one serving = volume of the bowl

- $=\pi r^{2} h$
- $=\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 4\right) \mathrm{cm}^{3}$
- $=154 \mathrm{~cm}^{3}$

Volume of soup given to 250 patients

- $=(250 \times 154) \mathrm{cm}^{3}$
- $=38500 \mathrm{~cm}^{3}$
- $=38.5$ Liters (1 liter $=1000$ cubic centimeter)

