FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit <u>Examrace</u>

YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.6 – Part 3

Get unlimited access to the best preparation resource for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

RECTANGULAR PRISM

$$V = lwh \text{ or } V = Bh$$

SPHERE

RIGHT CIRCULAR CYLINDER

RIGHT CIRCULAR CONE

RIGHT SQUARE PYRAMID

Q-6 The capacity of a closed cylindrical vessel of height 1m is 15.4 liters. How many square meters of metal sheet would be needed to make it?

Solution:

- · Consider the radius of the cylinder to be
- Height (h) of cylindrical vessel is 1m
- Since 1 cubic meter = 1000 liter. Therefore, volume of cylindrical vessel = 15.4liters = $0.0154m^3$
 - $\Rightarrow \pi r^2 h = 0.0154$

$$\circ \quad \Rightarrow \left(\frac{22}{7} \times r^2 \times 1\right) m = (0.0154) \, m^3$$

$$\circ \quad \Rightarrow r^2 = \frac{0.1078}{22}$$

$$ho \Rightarrow r^2 = 0.0049$$

$$\Rightarrow r = \sqrt{0.0049}$$

$$\circ \Rightarrow r = 0.07$$

So, the radius of the base of vessel = 0.07m

Total surface area of the cylindrical vessel

- $\bullet = 2\pi r (h+r)$
- = $2 \times \frac{22}{7} \times 0.07 (1 + 0.07)$
- $= 2 \times \frac{22}{7} \times 0.07 (1.07)$
- $=\frac{3.2956}{7}$
- $= 0.4708m^2$

So, $0.4708m^2$ of the metal sheet would be required to make the cylindrical vessel.

Q-7 A lead pencil consist of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is $_{1mm}$ and the diameter of the graphite is $_{1mm}$. If the length of the pencil is $_{14cm}$, find the volume of the wood and that of the graphite.

Solution:

- Diameter of the graphite cylinder = $1mm = \frac{1}{10}cm$
- Radius = $\frac{1}{20}cm\left(\because \text{ radius} = \frac{\text{diameter}}{2}\right)$
- Length of graphite = 14 cm

Volume of the graphite cylinder $= \pi r^2 h$

- $\bullet = \left(\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 14\right) cm^3$
- $= 0.11 cm^3$

Diameter of the pencil = $7mm = \frac{7}{10}cm$

- Therefore, radius = $\frac{7}{20}cm\left(\because \text{ radius} = \frac{\text{diameter}}{2}\right)$
- Length of pencil = 14 cm

Volume of the pencil = $\pi r^2 h$

- $\bullet \quad \left(\frac{22}{7} \times \frac{7}{20} \times \frac{7}{20} \times 14\right) cm^3$
- 5.39cm²

Now pencil has wood and graphite, therefore volume of wood = volume of the pencil - volume of the graphite

- $(5.39 0.11) cm^3$
- 5.28cm³

Q-8 A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7cm. If the bowl is filled with soup to a height of 4cm, how much soup the hospital has to prepare daily to serve 250 patients?

Solution:

- Diameter of the cylindrical bowl = 7 cm
- Therefore, radius = $\frac{7}{2}cm\left(\because \text{ radius} = \frac{\text{diameter}}{2}\right)$
- Height of serving bowl = 4 cm

So, soup saved in one serving = volume of the bowl

- $\bullet = \pi r^2 h$
- = $\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 4\right) cm^3$
- $= 154cm^3$

Volume of soup given to 250 patients

- $= (250 \times 154) cm^3$
- $= 38500cm^3$
- = 38.5 Liters (1 liter = 1000 cubic centimeter)