FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit <u>Examrace YouTube Channel</u> [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.6 – Part 2

Get unlimited access to the best preparation resource for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Q-3 A soft drink is available in two packs

- 1. A tin can with a rectangular base of length 5cm and width 4cm, having a height of 15cm and
- 2. A plastic cylinder with circular base of diameter 7cm and height 10 cm

Which container has greater capacity and by how much?

Solution (i)

Capacity of tin can

- l = 5 cm
- b = 4 cm
- h = 15 cm

Capacity = $l \times b \times h$

- $= 5 \times 4 \times 15 cm^3$
- $= 300cm^3$

Solution (ii)

Capacity or volume of plastic cylinder is given as $\pi r^2 h$

Diameter = 7 cm, therefore radius (r) = $\frac{7}{2} cm$

Height (h) = 10 cm

Therefore, capacity = $\pi r^2 h = \frac{22}{7} \times \left(\frac{7}{2}\right)^2 \times 10 = 385 cm^3$

Clearly the second container, the plastic cylinder has greater capacity than the first container, a tin can. The cylinder has $385 - 380 = 5cm^3$ more volume.

Q-4 If the lateral surface of a cylinder is $94.2cm^2$ and its height is 5cm, and then find

- 1. Radius of its base
- 2. Its volume . (*use* $\pi = 3.14$)

Solution:

1. Consider the radius of the cylinder be r_{cm} .

Height = 5 cm

- Later surface area = $94.2cm^2 = 2\pi rh$
- $2 \times 3.14 \times r \times 5 = 94.2$
- $r = \frac{94.2}{2 \times 3.14 \times 5}$
- $r = \frac{94.2}{31.4}$
- r = 3cm

So, the radius of the base is 3 cm.

- 1. Now, volume of cylinder = $\pi r^2 h$
- $2. = 3.14 \times 3 \times 3 \times 5 cm^3$
- $3. = 141.3cm^3$

Q-5 It costs $\neq 2200$ to paint the inner curved surface of a cylindrical vessel 10m deep. If the cost of painting is at the rate of $\neq 20 \ perm^2$, find

- 1. Inner curved surface area of the vessel
- 2. Radius of the base
- 3. Capacity of the vessel

Solution:

- 1. Inner curved surface area of the vessel
- 2. $\frac{\text{Total cost of painting}}{\text{Rate of painting}}$

$$3. = \frac{2200}{20} m^2$$

4. =
$$110m^2$$

- 5. Radius of the base
- 6. Consider the radius of the base
- 7. The height of the cylindrical vessel h = 10m

We know that inner curved surface area = $110m^2$

- Therefore, $2\pi rh = 110m^2$
- $2 \times \frac{22}{7} r \times 10 = 110$
- $r = \frac{770}{440}$
- r = 1.75m

So, the radius of the base is 1.75m

1. Capacity of the vessel = $\pi r^2 h$

$$2. = \frac{22}{7} \times 1.75 \times 1.75 \times 10m^3$$

$$3. = \frac{673.75}{7}$$

4. =
$$96.25m^3$$