FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.6 - Part 2

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Cylinder

Volume $=\pi r^{2} h$

Q-3 A soft drink is available in two packs

1. A tin can with a rectangular base of length 5 cm and width 4 cm , having a height of 15 cm and
2. A plastic cylinder with circular base of diameter 7 cm and height 10 cm

Which container has greater capacity and by how much?

Solution (i)

Capacity of tin can

- $l=5 \mathrm{~cm}$
- $b=4 \mathrm{~cm}$
- $h=15 \mathrm{~cm}$

Capacity $=l \times b \times h$

- $=5 \times 4 \times 15 \mathrm{~cm}^{3}$
- $=300 \mathrm{~cm}^{3}$

Solution (ii)

Capacity or volume of plastic cylinder is given as $\pi r^{2} h$
Diameter $=7 \mathrm{~cm}$, therefore radius $(\mathrm{r})=\frac{7}{2} \mathrm{~cm}$
Height (h) $=10 \mathrm{~cm}$
Therefore, capacity $=\pi r^{2} h=\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 10=385 \mathrm{~cm}^{3}$
Clearly the second container, the plastic cylinder has greater capacity than the first container, a tin can. The cylinder has $385-380=5 \mathrm{~cm}^{3}$ more volume.

Q-4 If the lateral surface of a cylinder is $94.2 \mathrm{~cm}^{2}$ and its height is 5 cm , and then find

1. Radius of its base
2. Its volume . (use $\pi=3.14)$

Solution:

1. Consider the radius of the cylinder be $r \mathrm{~cm}$.

Height $=5 \mathrm{~cm}$

- Later surface area $=94.2 \mathrm{~cm}^{2}=2 \pi r h$
- $2 \times 3.14 \times r \times 5=94.2$
- $r=\frac{94.2}{2 \times 3.14 \times 5}$
- $r=\frac{94.2}{31.4}$
- $r=3 \mathrm{~cm}$

So, the radius of the base is 3 cm .

1. Now, volume of cylinder $=\pi r^{2} h$
2. $=3.14 \times 3 \times 3 \times 5 \mathrm{~cm}^{3}$
3. $=141.3 \mathrm{~cm}^{3}$

Q-5 It costs ₹ 2200 to paint the inner curved surface of a cylindrical vessel $10 m$ deep. If the cost of painting is at the rate of $₹ 20$ perm 2, find

1. Inner curved surface area of the vessel
2. Radius of the base
3. Capacity of the vessel

Solution:

1. Inner curved surface area of the vessel
2. $\frac{\text { Total cost of painting }}{\text { Rate of painting }}$
3. $=\frac{2200}{20} m^{2}$
4. $=110 m^{2}$
5. Radius of the base
6. Consider the radius of the base
7. The height of the cylindrical vessel $h=10 m$

We know that inner curved surface area $=110 \mathrm{~m}^{2}$

- Therefore, $2 \pi r h=110 m^{2}$
- $2 \times \frac{22}{7} r \times 10=110$
- $r=\frac{110 \times 7}{2 \times 22 \times 10}$
- $r=\frac{770}{440}$
- $r=1.75 m$

So, the radius of the base is 1.75 m

1. Capacity of the vessel $=\pi r^{2} h$
2. $=\frac{22}{7} \times 1.75 \times 1.75 \times 10 \mathrm{~m}^{3}$
3. $=\frac{673.75}{7}$
4. $=96.25 m^{3}$
