FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Surface Areas and Volumes (Chapter 13) Exercise 13.5 - Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Sphere

Right Circular Cone

Rectangular Prism

$$
V=l w h \text { or } V=B h
$$

Right Circular Cylinder

Right Square Pyramid

Q-1 A matchbox measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What will be the volume of a packet containing 12 such boxes?
Solution:

- Each matchbox measures $=4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$
- Therefore, $l=4 \mathrm{~cm}, b=2.5 \mathrm{~cm}$ and $h=1.5 \mathrm{~cm}$

Volume of one matchbox

- $(l \times b \times h)$
- $(4 \times 2.5 \times 1.5) \mathrm{cm}^{3}$
- $15 \mathrm{~cm}^{3}$

Volume of a packet containing ${ }_{12}$ such boxes

- $(12 \times 15) \mathrm{cm}^{3}$
- $180 \mathrm{~cm}^{3}$

Q-2 A cuboidal water tank is ${ }_{6 m}$ long, ${ }_{5 m}$ wide and $4.5 m$ deep. How many litres of water can it hold? ($1 m^{3}=1000 l$)

Solution:

- Dimensions of water tank $=6 m \times 5 m \times 4.5 m$
- $l=6 m, b=5 m \mathrm{and} h=4.5 m$

Therefore Volume of the tank

- $l b h m^{3}$
- $(6 \times 5 \times 4.5) m^{3}$
- $135 m^{3}$

Therefore, the tank can hold

- 135×1000 liters [Note that, $1 \mathrm{~m}^{3}=1000$ litres]
- 135000 Liters of water.

Q-3 A cuboidal vessel is 10 m long and $8 m$ wide. How high must it be made to hold 380 cubic metres of a liquid? Solution:
We know that,

- Length $=10 \mathrm{~m}$,
- Breadth $=8 m$
- Volume $=380 \mathrm{~m}^{3}$

Volume of cuboid $=$ Length \times Breadth \times Height
Therefore, Height $=\frac{\text { Volume of cuboid }}{\text { Length } \times \text { Breadth }}=\frac{380}{10 \times 8}=4.75 \mathrm{~m}$
Q-4 Find the cost of digging a cuboidal pit ${ }_{8 m}$ long, ${ }_{6 m}$ broad and ${ }_{3 m}$ deep at the rate of $₹ 30$ perm 3.
Solution:

We know,

- $l=8 m$,
- $b=6 m$
- $h=3 m$

Volume of the pit

- $\quad l b h m^{3}$
- $(8 \times 6 \times 3) m^{3}$
- $144 m^{3}$

Rate of digging is ₹ $30 \mathrm{perm}^{3}$. Therefore, total cost of digging the pit $=₹(144 \times 30)=₹ .4320$

