FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Heron's Formula (Chapter 12) Exercise 12.2 Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Heron's Triangle & Formulas

semiperimeter
$$s = \frac{(a+b+c)}{2}$$

area
$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

Q-1 A park, in the shape of a quadrilateral ABCD, has

 $\angle B = 90^{\circ}, CA = 9m, AB = 12m, BD = 5m$ and CD = 8m. How much area does it occupy?

Solution:

Given a quadrilateral ABCD with, $\angle B = 90^{\circ}$, CA = 9m, AB = 12m, BD = 5m and CD = 8m.

Construction: Join diagonal AD

To find the area of quadrilateral we can add the areas of two trianlges. In ΔABD , by applying Pythagoras theorem,

- $\bullet \quad AD^2 = AB^2 + BD^2$
- $AD^2 = 122 + 52$
- $AD^2 = 169$
- AD = 13m

Also since triangle $\triangle ABD$ is right triangle, Area of $\triangle ABD = \frac{1}{2} \times 12 \times 5 = 30m^2$ Now, semi perimeter of $\triangle CAD = \frac{8+9+13}{2}m = \frac{30}{2}m = 15m$

Using heron's formula, area of ACAD

- $\sqrt{s(s-a)(s-b)(s-c)}$
- $\sqrt{15(15-13)(15-9)(15-8)m^2}$
- $6\sqrt{35}m^2$
- $35.49m^2$ (approx.)

Area of quadrilateral ABCD = Area of ΔABD + Area of ΔCAD = $30m2 + 35.49m^2 = 65.49m^2$

Q-2 Find the area of a quadrilateral ABCD in which

CD = 3 cm, CB = 4 cm, CD = 4 cm, AD = 5 cm and BD = 5 cm.

Solution:

Given a quadrilateral ABCD, CD = 3 cm, CB = 4 cm, CD = 4 cm, AD = 5cm and BD = 5 cm.

We can calculate the area of the two triangles by using heroes' formula on the two triangles. However we can make things simple by first proving that that ΔDCB is a right triangle. let's see if it satisfies Pythagoras theorem,

- $\bullet \quad BD^2 = DC^2 + CB^2$
- $5^2 = 3^2 + 4^2$
- 25 = 9 + 16
- 25 = 25

Thus, ΔDCB is a right angled at C. Area of ΔCBA

$$\bullet \quad \frac{1}{2} \times 3 \times 4 = 6cm^2$$

Now, semi perimeter of $\Delta DBA = \frac{5+5+4}{2}cm = \frac{14}{2}cm = 7m$

Using heron's formula, area of *ADCA*

• =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

• =
$$\sqrt{7(7-5)(7-5)(7-4)cm^2}$$

• =
$$\sqrt{7 \times 2 \times 2 \times 3 cm^2}$$

$$\bullet = 2\sqrt{21}cm^2$$

• $\approx 9.17cm^2$ (approx.)

Finally, area of quadrilateral

• ABCD = Area of ΔDCB + Area of ΔDCA = $6cm^2 + 9.17cm^2 = 15.17cm^2$