FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Heron's Formula (Chapter 12) Exercise

12.2 Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Heron's Triangle \& Formulas

$$
\text { semiperimeter } s=\frac{(a+b+c)}{2}
$$

$$
\text { area } A=\sqrt{s(s-a)(s-b)(s-c)}
$$

Q-1 A park, in the shape of a quadrilateral $A B C D$, has
$\angle B=90^{\circ}, C A=9 m, A B=12 m, B D=5$ mand CD $=8 m$. How much area does it occupy?
Solution:

Given a quadrilateral ABCD with, $\angle B=90^{\circ}, C A=9 m, A B=12 m, B D=5 m$ and $\mathrm{CD}=8 \mathrm{~m}$.
Construction: Join diagonal AD
To find the area of quadrilateral we can add the areas of two trianlges. In $\triangle A B D$, by applying Pythagoras theorem,

- $A D^{2}=A B^{2}+B D^{2}$
- $A D^{2}=122+52$
- $A D^{2}=169$
- $A D=13 m$

Also since triangle $\triangle A B D$ is right triangle, Area of $\triangle A B D=\frac{1}{2} \times 12 \times 5=30 m^{2}$ Now, semi perimeter of $\triangle C A D \frac{8+9+13}{2} m=\frac{30}{2} m=15 m$

Using heron's formula, area of $\triangle C A D$

- $\sqrt{s(s-a)(s-b)(s-c)}$
- $\sqrt{15(15-13)(15-9)(15-8) m^{2}}$
- $\sqrt{15 \times 2 \times 6 \times 7} m^{2}$
- $6 \sqrt{35} m^{2}$
- $35.49 m^{2}$ (approx.)

Area of quadrilateral $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle C A D=30 m 2+35.49 m^{2}=65.49 m^{2}$
Q-2 Find the area of a quadrilateral $A B C D$ in which
$C D=3 \mathrm{~cm}, C B=4 \mathrm{~cm}, C D=4 \mathrm{~cm}, A D=5 \mathrm{~cm}$ and $\mathrm{BD}=5 \mathrm{~cm}$.

Solution:

Given a quadrilateral $\mathrm{ABCD}, C D=3 \mathrm{~cm}, C B=4 \mathrm{~cm}, C D=4 \mathrm{~cm}, A D=5 \mathrm{~cm}$ and $\mathrm{BD}=5 \mathrm{~cm}$.
We can calculate the area of the two triangles by using heroes' formula on the two triangles.
However we can make things simple by first proving that that $\triangle D C B$ is a right triangle. let's see if it satisfies Pythagoras theorem,

- $B D^{2}=D C^{2}+C B^{2}$
- $5^{2}=3^{2}+4^{2}$
- $25=9+16$
- $25=25$

Thus, $\triangle D C B$ is a right angled at C. Area of $\triangle C B A$

- $\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$

Now, semi perimeter of $\triangle D B A=\frac{5+5+4}{2} c m=\frac{14}{2} c m=7 \mathrm{~m}$
Using heron's formula, area of $\triangle D C A$

- $=\sqrt{s(s-a)(s-b)(s-c)}$
- $=\sqrt{7(7-5)(7-5)(7-4) \mathrm{cm}^{2}}$
- $=\sqrt{7 \times 2 \times 2 \times 3 \mathrm{~cm}^{2}}$
- $=2 \sqrt{21} \mathrm{~cm}^{2}$
- $\approx 9.17 \mathrm{~cm}^{2}$ (approx.)

Finally, area of quadrilateral

- $A B C D=$ Area of $\triangle D C B+$ Area of $\triangle D C A=6 \mathrm{~cm}^{2}+9.17 \mathrm{~cm}^{2}=15.17 \mathrm{~cm}^{2}$

