FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Constructions (Chapter 11) Exercise 11.2

Glide to success with Doorsteptutor material for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

CONSTRUCTION OF TRIANGLES

A triangle can be constructed when the base, one base angle and the sum of the other two sides are given or given its base, a base angle and the difference between the other two sides or given its perimeter and two base angles.

Q-1 Construct a triangle JAB in which $A B=7 \mathrm{~cm}, \angle A=75^{\circ}$ and $\mathrm{JA}+J B=13 \mathrm{~cm}$.
Solution:
Image Title: Triangle JAB
Image Description: Triangle JAB, $A B=7 \mathrm{~cm}, \angle A=75^{\circ}$ and $\mathrm{JA}+J B=13 \mathrm{~cm}$

Give, $\triangle A B C, A B=7 \mathrm{~cm}, \angle A=75^{\circ}$ and $\mathrm{JA}+J B=13 \mathrm{~cm}$

Step of Construction

- A line segment AB of 7 cm is drawn.
- At point A, an angle $\angle C A B$ is constructed such that it is equal to 75°.
- A line segment $A D=13 \mathrm{~cm}$ is cut on AC (which is equal to $J A+J B$).
- DB is joined and $\angle D B E=\angle A D B$ is made.
- Let BE intersect AC at J.

Thus, required triangle is $\triangle J A B$
Q-2 Construct a triangle DAB in which $A B=8 \mathrm{~cm}, \angle A=45^{\circ}$ and $\mathrm{AD}-D B=3.5 \mathrm{~cm}$.
Solution:

Give $\triangle D A B, A B=8 \mathrm{~cm}, \angle A=45^{\circ}$ and $\mathrm{AD}-D B=3.5 \mathrm{~cm}$

Steps of Construction

- A line segment $A B=8 \mathrm{~cm}$ is drawn and at point A , make an angle of 45° i.e.. $\angle C A B$.
- Cut the line segment $A G=3.5 \mathrm{~cm}$ (equal to $D A-D B$) on ray $A C$.
- Join GB and draw the perpendicular bisector PQ of GB .
- Let it intersect AC at point D. Join DB.

Thus, $\triangle D A B$ is the required triangle.
Q-3 Construct a triangle EAR in which $A R=6 \mathrm{~cm}, \angle A=60^{\circ}$ and $\mathrm{PR}-E A=2 \mathrm{~cm}$.
Solution:

Give, Triangle EAR, $A R=6 \mathrm{~cm}, \angle A=60^{\circ}$ and $\mathrm{PR}-E A=2 \mathrm{~cm}$.

Steps of Construction

- A ray $A X$ is drawn and cut off a line segment $A R=6 \mathrm{~cm}$ from it.
- A ray AY is constructed making an angle of 60° with $A R$ and YA is produced to form a line YAY ${ }^{\prime}$
- Cut off a line segment $\mathrm{AB}=2 \mathrm{~cm}$ from $A Y^{\prime} . \mathrm{RB}$ is joined.
- Draw perpendicular bisector of RB intersecting AY at a point E. ER is joined.

Thus, $\triangle \mathrm{EAR}$ is the required triangle.

Q-4 Construct a triangle HFI in which $\angle F=30^{\circ}, \angle I=90^{\circ}$ and $\mathrm{HF}+F I+I H=11 \mathrm{~cm}$.

Solution:

Give, Triangle HFI $\angle F=30^{\circ}, \angle I=90^{\circ}$ and $\mathrm{HF}+F I+I H=11 \mathrm{~cm}$.
Steps of Construction:

- A line segment $C A=11 \mathrm{~cm}$ is drawn. $(H F+F I+I H=11 \mathrm{~cm})$
- An angle, $\angle D C A=30^{\circ}$ and an angle $\angle B A C=90^{\circ}$.
- $\angle D C A$ And $\angle B A C$ are bisected. The bisectors of these angles intersect each other at point H.
- Perpendicular bisectors PQ of CH and RV of AH are constructed.
- Let PQ intersect CA at F and RV intersect CA at I. FH and HI are joined.

Thus, $\triangle H F I$ is the required triangle.
Q-5 Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.

Solution:

Give, right triangle base 12 cm and othrside is 18 cm

Steps of Construction:

- A ray AX is drawn and a cut off a line segment $A J=12 \mathrm{~cm}$ is made on it.
- $\angle X A Y=90^{\circ}$ is constructed.
- Cut off a line segment $A Q=18 \mathrm{~cm}$ is made on AY . JQ is joined.
- Perpendicular bisector of JQ is constructed intersecting AQ at P. PJ is joined.
- Thus, $\triangle P A J$ is the required triangle.

