FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Circles (Chapter 10) Exercise 10.5 - Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

$\mathrm{Q}-1$ In the figure, P, Q and R are three points on a circle with center 0 such that $\angle Q O R=30^{\circ}$ and $\angle P O Q=60^{\circ}$. If S is a point on the circle other than the arc PQR , find $\angle P S R$.

Solution:

Given,

- P, Q R are three points on a circle
- Its center is 0
- Also, $\angle Q O R=30^{\circ}$ and $\angle P O Q=60$

Now,

- $\angle P O R=\angle P O Q+\angle Q O R$
- $\angle P O R=60^{\circ}+30^{\circ}\left(\angle Q O R=30^{\circ}\right.$ and $\left.\angle P O Q=60\right)$
- $\angle P O R=90^{\circ}$

We know angle subtend by an arc at the center is double the angle subtended by the same arch at the any point on the remaining part of the circle.

Therefore, $\angle P S R=\frac{1}{2} \angle P O R=\frac{1}{2} \times 90^{\circ}=45^{\circ}$
Q-2 A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and at a point on the major arc.

Solution:
Given, PR is equal to the radius of the circle.

- In $\triangle O P R, O P=\mathrm{OR}=P R=$ Radius of the circle.
- Thus, $\triangle O P R$ is an equilateral triangle, and, $\angle P O R=60^{\circ}$

Since angle subtended by an arc at any point on the remainder of the circle is half the angle subtended by the same arc at the center. Therefore, $\angle \mathrm{PQR}={ }_{\frac{1}{2}} \angle \mathrm{POR}=$ $\frac{1}{2} \times 60^{\circ}=30^{\circ}\left(\because \angle P O R=60^{\circ}\right)$

Since, PQRD is a cyclic quadrilateral,

- $\angle P Q R+\angle P D R=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
- $\angle P D R=180^{\circ}-30^{\circ}=150^{\circ}\left(\because \angle P Q R=30^{\circ}\right)$
- Thus the angles subtended by the chord with length equal to the radius are 150° on major arc and 30° on minor arc.

