FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Circles (Chapter 10) Exercise 10.5 – Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Q-1 In the figure, P, Q and R are three points on a circle with center O such that $\angle QOR = 30^{\circ}$ and $\angle POQ = 60^{\circ}$. If S is a point on the circle other than the arc PQR, find $\angle PSR$.

Solution:

Given,

- P, Q, R are three points on a circle
- Its center is 0
- Also, $\angle QOR = 30^{\circ}$ and $\angle POQ = 60$

Now,

- $\angle POR = \angle POQ + \angle QOR$
- $\angle POR = 60^{\circ} + 30^{\circ}$ ($\angle QOR = 30^{\circ}$ and $\angle POQ = 60$)
- $\angle POR = 90^{\circ}$

We know angle subtend by an arc at the center is double the angle subtended by the same arch at the any point on the remaining part of the circle.

Therefore,
$$\angle PSR = \frac{1}{2} \angle POR = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$

Q-2 A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and at a point on the major arc.

Solution:

Given, PR is equal to the radius of the circle.

- In $\triangle OPR$, OP = OR = PR =Radius of the circle.
- Thus, $\triangle OPR$ is an equilateral triangle, and, $\angle POR = 60^{\circ}$

Since angle subtended by an arc at any point on the remainder of the circle is half the angle subtended by the same arc at the center. Therefore, \angle PQR = $_{\frac{1}{2}}$ \angle POR =

$$\frac{1}{2} \times 60^{\circ} = 30^{\circ} \left(\because \angle POR = 60^{\circ}\right)$$

Since, PQRD is a cyclic quadrilateral,

- $\angle PQR + \angle PDR = 180^{\circ}$ (Opposite angles of cyclic quadrilateral)
- $\angle PDR = 180^{\circ} 30^{\circ} = 150^{\circ} \ (:: \angle PQR = 30^{\circ})$
- Thus the angles subtended by the chord with length equal to the radius are $_{150^{\circ}}$ on major arc and $_{30^{\circ}}$ on minor arc.