FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 9 Solutions: Circles (Chapter 10) Exercise 10.4 - Part 1

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Q-1 Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

Solution:

Given, two circles with radius 5 cm and 3 cm .

- $O A=5 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and $O C=4 \mathrm{~cm}$.
- Also , $A B=2 A D$ (as we proved above)
- Let $D C$ be

In $\triangle A O D$,

- $O A^{2}=O D^{2}+A D^{2}$
- $O A^{2}=(O C-D C)^{2}+A D^{2}(\because O C=O D+D C)$
- $5^{2}=(4-x)^{2}+A D^{2}$
- $25=16-8 x+x^{2}+A D^{2}$
- $A D^{2}=9+8 x-x^{2}$... equation (1)

In $\triangle A D C$,

- $A C^{2}=A D^{2}+D C^{2}$
- $3^{2}=A D^{2}+x^{2}$
- $A D^{2}=9-x^{2}$... equation (2)

Equating (1) and (2) ,

- $A D^{2}=A D^{2}$
- $\Rightarrow 9+8 x-x^{2}=9-x 2$
- $\Rightarrow 8 x=0$
- $\Rightarrow x=0$

Putting the value of in (1) we get,

- $A D^{2}=9-0^{2}$
- $A D^{2}=9$
- $A D=3 \mathrm{~cm}$

Therefore, length of the chord $A B=2 A D=2 \times 3=6 \mathrm{~cm}$
Q-2 If two equal chords of a circle intersect within the circle; prove that the segments of one chord are equal to corresponding segments of the other chord.

Solution:

- Given, PQ and SR are chords intersecting at T and $P Q=S R$
- To prove, $P T=T R$ And $S T=T Q$

Construction, draw perpendicular bisectors of PQ and SR. Line from the center which bisects a chord is perpendicular to the chord.

- $o m$ bisects $P Q(O M \perp P Q)$
- on bisects $S R(\mathrm{ON} \perp S R)$

As $P Q=S R$

- $P M=N R$... equation (1)
- Because M and N are midpoints of PQ and $\mathrm{SR}, M Q=S N \ldots$ equation (2)

In $\triangle O M T$ and $\triangle O N T$

- $\angle O M T=\angle O N T$ (perpendiculars)
- $O T=O T$ (common line)
- $O M=\mathrm{ON}(P Q=₹$ and thus equidistant from the centre)
- $\triangle O M T \cong \triangle O N T$ By Right Angle Hypotenuse congruence condition.
- $M T=T N$ by Corresponding Parts of Congruent Triangles ... equation (3)

From (1) and (2) we get,

- $M Q=S N$
- $\Rightarrow P M+M T=N R+T N$ (since we are adding equal parts (MT and TN) to equal quantities what we get according to Euclid is also equal)
- Therefore, $P T=T R$

Again,

- $M Q=S N$
- $M Q-M T=S N-T N$ (since we are subtracting equal parts (MT and TN) from equal quantities what is left according to Euclid is also equal)
- $T Q=S T$

