FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 10 Solutions: Real Numbers (Chapter 1) Exercise 1.1 - Part 2

Glide to success with Doorsteptutor material for CBSE/Class-10 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-10/]- for all subjects of CBSE/Class-10.

Q-3 An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

Solution:

For the above problem , the maximum number of columns would be the HCF of 616 and 32
We can find the HCF of 616 and 32 by using Euclid Division algorithm.
Therefore,

$$
616=19 \times 32+8
$$

Since remainder $8 \neq 0$, we apply the division lemma to 32 and 8 to obtain

$$
32=4 \times 8+0
$$

Therefore $\operatorname{HCF}(616,32)=\operatorname{HCF}(32,8)=8$
Therefore, they can march in 8 columns each.
Q-4 Use Euclid's division lemma to show that the square of any positive integer is either of form $3 m$ or $3 m+1$ for some integer m.
[Hint: Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$. Now square each of these and show that they can be rewritten in the form 3 mor $3 m+1$.]

Solution:

Euclidd's IDivisiom Iemma

QUESTION

Show that the square of any positive integer is of the form $4 p$ or $4 p+1$ for some integer " p "

SOLUTION

Let ' m ' be the positive integer

Case 1

If " m " is Even
when $m=2 q$
$m^{2}=(2 q)^{2}$
$\mathrm{m}^{2}=4 \mathrm{q}^{2}$
$\mathrm{m}^{2}=4 \mathrm{q}(\mathrm{q}+0)$
$m^{2}=4 p\{\because p=q(q+0)\}$

\therefore The square of any positive integer is of the form $4 p$ or $4 p+1$ for ome integer "p"

According to Euclid algorithm
We have $a=b q+r$ (Equation 1)
And substituting $b=3$ in equation 1 , we get

$$
\begin{aligned}
& a=3 q+r,\{r \leqslant 0<3\} \\
& r=0,1,2
\end{aligned}
$$

When $r=0, a=3 q$ or $a^{2}=9 q^{2}$ (Equation A)
When $r=1, a=3 q+1$ or $a^{2}=9 q^{2}+1+6 q$ (Equation B)
When $r=2, a=3 q+2$ or $a^{2}=9 q^{2}+4+12 q$ (Equation C)
We can be rewrite equation A as $a^{2}=3\left(3 q^{2}\right)$ say 3 m
Where, $m=3 q^{2}$
Also equation B can be written as $a^{2}=3\left(3 q^{2}+2 q\right)+1$ or $a^{2}=3 m+1$
Where, $m=3 q^{2}+2 q$
Also equation C can be written as $a^{2}=3\left(3 q^{2}+4 q+1\right)+1$ or $a^{2}=3 m+1$

Hence, the square of any positive integer is either of the form $3 m o r 3 m+1$ for some integer m.
Q-5 Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 m+8$.

Solution:

We know that by using Euclid's Division Algorithm, $a=b q+r$
Substituting $b=9$, we get
$a=9 q+r$ Where, $\{r \leqslant 0<9\}$

$$
r=0,1,2,3,4,5,6,7,8
$$

When $r=0, a=9 q$

$$
a^{3}=729 q^{3}=9\left(81 q^{3}\right)=9 m, \text { where } m=81 q^{3}
$$

When $r=1, a=9 q+1$

$$
a^{3}=729 q^{3}+243 q^{2}+27 q+1
$$

$=9\left(81 q^{3}+27 q^{2}+3 q\right)+1=9 m+1$, where $m=81 q^{3}+27 q^{2}+3 q$
When $r=4, a=9 q+4$

$$
\begin{aligned}
& a^{3}=729 q^{3}+972 q^{2}+432 q+64 \\
& =9\left(81 q^{3}+108 q^{2}+48 q+7\right)+1
\end{aligned}
$$

Continuing the process till $r=8$ and $a=9 q+8$, we get

$$
\begin{aligned}
& a^{3}=729 q^{3}+1944 q^{2}+1728 q+512 \\
& =9\left(81 q^{3}+216 q^{2}+192 q+56\right)+8 \\
& =9 m+8
\end{aligned}
$$

Where, $m=81 q^{3}+216 q^{2}+192 q+56$
Hence, it is proved that any positive integer is either of the form $9 m, 9 m+1$ or $9 m+8$

