FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class 12 NCERT Solutions: Chapter 8 the D and F Block Elements Part 1

Get top class preparation for CBSE/Class-12 right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Q: 1. Write down the electronic configuration of:

- (i) $Cr^{3+}+$
- (ii) Pm^{3+}
- (iii) Cu+

- (iv) Ce^{4+}
- (v) $Co^2 +$
- (vi) Lu^{2+}
- (vii) Mn^{2+}
- (viii) Th4+

Answer:

(i)
$$Cr^{3+}: 1s^22s^22p^63s^23p^63d^3$$

Or, $[Ar]^{18}3d^3$

(ii)
$$Pm^{3+}: 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^64f^4$$

Or, $[Xe]^{54}3d^3$

(iii)
$$Cu^+: 1s^22s^22p^63s^23p^63d^{10}$$

Or, $[Ar]^{18}3d^{10}$

(iv)
$$Ce^{4+}: 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$$

Or, $[Xe]^{54}$

(v)
$$Co^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$$

Or, $[Ar]^{18}3d^7$

(vi)
$$Lu^{2+}: 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^64f^{14}5d^{10}$$

Or, $[Xe]^{54}2f^{14}3d^3$

(vii)
$$Mn^{2+}: 1s^22s^22p^63s^23p^63d^5$$

Or. [Ar]18 3d5

(viii)
$$Th^{4+}: 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26s^6$$

Or, $[Rn]^{86}$

Q: 2. Why are Mn^{2+} compounds more stable than Fe^{2+} towards oxidation to their +3 state?

Answer:

Electronic configuration of Mn^{2+} is $[Ar]^{18}3d^5$

Electronic configuration of Fe^{2+} is $[Ar]^{18}3d^6$.

It is known that half-filled and fully7filled orbitals are more stable. Therefore, Mn in (+2) state has a stable $_{d^5}$ configuration. This is the reason Mn^{2+} shows resistance to oxidation to Mn^{3+} . Also, Fe^{2+} has3 d^6 configuration and by losing one electron, its configuration changes to a more stable $_{3d^5}$ configuration. Therefore, Fe^{2+} easily gets oxidized to Fe^{+3} oxidation state.

Q: 3. Explain briefly how +2 state becomes more and more stable in the first half of the first row transition elements with increasing atomic number?

Answer:

The oxidation states displayed by the first half of the first row of transition metals are given in the table below.

	Sc	Ti	V	Cr	Mn
		+ 2	+ 2	+ 2	+ 2
	+ 3	+ 3	+ 3	+ 3	+ 3
Oxidation state		+ 4	+ 4	+ 4	+ 4
			+ 5	+ 5	+ 6
				+ 6	+ 7
Q_3_Oxidation Sate					

It can be easily observed that except s_c , all others metals display t_c oxidation state. Also, on moving from t_c to t_c

$$Sc(+2) = d^1$$

$$Ti(+2) = d^2$$

$$V(+2) = d^3$$

$$Cr(+2) = d^4$$

$$Mn(+2) = d^5$$

oxidation state is attained by the loss of the two $_{4s}$ electrons by these metals. Since the number of electrons in $_{(+2)}$ state also increases from Ti(+2) to Mn(+2), the stability of $_{+2}$ state increases (as $_{d-}$ orbital is becoming more and more half-filled). Mn(+2) has d^5 electrons (that is half7filled shell, which is highly stable).

Q: 4. To what extent do the electronic configurations decide the stability of oxidation states in the first series of the transition elements? Illustrate your answer with examples.

Answer:

The elements in the first half of the transition series exhibit many oxidation states with Mn exhibiting maximum number of oxidation states (+2to+7). The stability of +2 oxidation state increases with the increase in atomic number. This happens as more electrons are getting filled in the orbital. However, sc does not show +2 oxidation state. Its electronic configuration is $4s^23d^1$. It loses all the three electrons to form Sc^{3+} . +3 oxidation state of sc is very stable as by losing all three electrons, it attains stable noble gas configuration, $[Ar] \cdot Ti (+4)$ and V(+5) are very stable for the same reason. For Mn, +2 oxidation state is very stable as after losing two electrons, its d – orbital is exactly half 7 filled, $[Ar] \cdot 3d^5$.

Q: 5. What may be the stable oxidation state of the transition element with the following electron configurations in the ground state of their atoms : $3d^3$, $3d^5$, $3d^8$ and $3d^4$?

Answer:

	Electronic configuration in ground state	Stable Oxidation states		
(i)	3d³ (Vanadium)	+ 2, + 3, + 4 and + 5		
(ii)	3d ⁵ (Chromium)	+ 3, + 4, + 6		
(iii)	3d ⁵ (Manganese)	+ 2, + 4, + 6, + 7		
(iv)	3d ⁸ (Cobalt)	+2,+3		
(v)	$3d^4$	There is no $3d^4$ configuration in ground state		
Q_5_The Stable Oxidation State of the Transition Element				