FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class 12 NCERT Solutions: Chapter 2 Solutions Part 6

Doorsteptutor material for CBSE/Class-12 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Q: $5.10 \% \mathrm{w} / \mathrm{w}$ solution of glucose in water means that 10 g of glucose in present in 100 g of the solution i.e.., 10 g of glucose is present in $(100-10) \mathrm{g}=90 \mathrm{~g}$ of water.

Molar mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=6 \times 12+12 \times 1+6 \times 16=180 \mathrm{gmol}^{-1}$
Then, number of moles of glucose $=\frac{10}{180} \mathrm{~mol}$

$$
=0.056 \mathrm{~mol}
$$

\therefore Molality of solution $=\frac{0.056 \mathrm{~mol}}{0.09 \mathrm{~kg}}=0.62 \mathrm{~m}$
Number of moles of water $=\frac{90 \mathrm{~g}}{18 \mathrm{gmol}^{-1}}$

$$
=5 \mathrm{~mol}
$$

$$
\left(x_{g}\right)=\frac{0.056}{0.056+5}
$$

\Rightarrow Mole fraction of glucose $=0.011$
And, mole fraction of water $x_{w}=l-x_{g}$

$$
\begin{aligned}
& =1-0.011 \\
& =0.989
\end{aligned}
$$

If the density of the solution is $1.2 \mathrm{gmL}^{-1}$, then the volume of the 100 g solution can be given as:

$$
\begin{aligned}
& =\frac{100 g}{1.2 g m L^{-1}} \\
& =83.33 \mathrm{~mL} \\
& =83.33 \times 10^{-3} \mathrm{~L}
\end{aligned}
$$

\therefore Molarity of the solution $=\frac{0.056 \mathrm{~mol}}{83.33 \times 10^{-3} \mathrm{~L}}$

$$
=0.67 \mathrm{M}
$$

Q: 6. How many mL of0.1 M HCl are required to react completely with ${ }_{18}$ mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} containing equimolar amounts of both?

Ans:
Let the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture be xg .

Then, the amount of NaHCO_{3} in the mixture is $(1-x) g$.
Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \times 23+1 \times 12+3 \times 16$

$$
=106 \mathrm{gmol}^{-1}
$$

\therefore Number of moles $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{x}{106} \mathrm{~mol}$
Molar mass of $\mathrm{NaHCO}_{3}=1 \times 23+1 \times 1 \times 12+3 \times 16$

$$
=84 \mathrm{gmol}^{-1}
$$

\therefore Number of moles of $\mathrm{NaHCO}_{3}=\frac{1-x}{84} \mathrm{~mol}$
According to the question,

$$
\begin{aligned}
& \frac{x}{106}=\frac{1-x}{84} \\
& \Rightarrow 84 x=106-106 x \\
& \Rightarrow 190 x=106 \\
& \Rightarrow x=0.5579
\end{aligned}
$$

Therefore, number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.5579}{106} \mathrm{~mol}$

$$
=0.0053 \mathrm{~mol}
$$

And, number of moles of $\mathrm{NaHCO}_{3}=\frac{1-0.5579}{84}$

$$
=0.0053 \mathrm{~mol}
$$

HCl reacts with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} according to the following equation.

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

2 mol 1 mol
$\mathrm{HCl}+\mathrm{NaHCO} 3 \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

1 mol 1 mol
1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with 2 mol of HCl .
Therefore, 0.0053 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with $2 \times 0.0053 \mathrm{~mol}=0.0106 \mathrm{~mol}$.
Similarly, 1 mol of NaHCO_{3} reacts with 1 mol of HCl .
Therefore, 0.0053 mol of NaHCO_{3} reacts with 0.0053 mol of HCl .
Total moles of HCl required $=(0.0106+0.0053) \mathrm{mol}$

$$
=0.0159 \mathrm{~mol}
$$

In 0.1 M of HCl
0.1 mol of HCl is preset in 1000 mL of the solution.

Therefore, 0.0159 mol of HCl is present in $\frac{1000 \times 0.0159}{0.1} \mathrm{~mol}$
$=159 \mathrm{~mL}$ of the solution

Hence, 159 mL of 0.1 M of HCl is required to react with ${ }_{1 \mathrm{~g}}$ mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}, containing equimolar amounts of both.

Q: 7. A solution is obtained by mixing $300 \mathrm{gof} 25 \%$ solution and $400 \mathrm{gof} 40 \%$ solution by mass. Calculate the mass percentage of the resulting solution.

Answer:

Total amount of solute present in the mixture is given by,

$$
\begin{aligned}
& 300 \times \frac{25}{100}+400 \times \frac{40}{100} \\
& =75+160 \\
& =235 \mathrm{~g}
\end{aligned}
$$

Total amount of solution $=300+400=700 \mathrm{~g}$
Therefore, mass percentage (w / w) of the solute in the resulting solution, $=\frac{235}{700} \times 100 \%$

$$
=33.57 \%
$$

And, mass percentage (w / w) of the solvent in the resulting solution,

$$
\begin{aligned}
& =(100-33.57) \% \\
& =66.43 \%
\end{aligned}
$$

