FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class 12 NCERT Solutions: Chapter 2 Solutions Part 6

Doorsteptutor material for CBSE/Class-12 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Q: 5. $_{10\%}$ w/w solution of glucose in water means that $_{10g}$ of glucose in present in $_{100g}$ of the solution i.e., 10 g of glucose is present in $_{100}$ = $_{100}$ of water.

Molar mass of glucose $(C_6H_{12}O_6) = 6 \times 12 + 12 \times 1 + 6 \times 16 = 180 gmol^{-1}$

Then, number of moles of glucose $=\frac{10}{180}$ mol

 $= 0.056 \, mol$

∴ Molality of solution =
$$\frac{0.056 \, mol}{0.09 \, kg} = 0.62 m$$

Number of moles of water = $\frac{90g}{18gmol^{-1}}$

= 5 mol

$$(x_g) = \frac{0.056}{0.056 + 5}$$

 \Rightarrow Mole fraction of glucose = 0.011

And, mole fraction of water $x_w = l - x_g$

$$= 1 - 0.011$$

= 0.989

If the density of the solution is $1.2gmL^{-1}$, then the volume of the 100g solution can be given as:

$$=\frac{100g}{1.2gmL^{-1}}$$

 $= 83.33 \, mL$

$$= 83.33 \times 10^{-3} L$$

∴ Molarity of the solution
$$=\frac{0.056 \, mol}{83.33 \times 10^{-3} \, L}$$

= 0.67M

Q: 6. How many mL $_{0}$ f0.1M HCl are required to react completely with $_{1g}$ mixture of $Na_{2}CO_{3}$ and $NaHCO_{3}$ containing equimolar amounts of both?

Ans:

Let the amount of Na_2CO_3 in the mixture be x g.

Then, the amount of NaHCO₃ in the mixture is (1-x)g.

Molar mass of $Na_2CO_3 = 2 \times 23 + 1 \times 12 + 3 \times 16$

$$= 106 gmol^{-1}$$

∴ Number of moles $Na_2CO_3 = \frac{x}{106}mol$

Molar mass of NaHCO₃ = $1 \times 23 + 1 \times 1 \times 12 + 3 \times 16$

$$=84gmol^{-1}$$

∴ Number of moles of NaHCO₃ = $\frac{1-x}{84}$ mol

According to the question,

$$\frac{x}{106} = \frac{1-x}{84}$$

$$\Rightarrow 84x = 106 - 106x$$

$$\Rightarrow 190x = 106$$

$$\Rightarrow x = 0.5579$$

Therefore, number of moles of $Na_2CO_3 = \frac{0.5579}{106} mol$

$$= 0.0053 \, mol$$

And, number of moles of NaHCO₃ = $\frac{1 - 0.5579}{84}$

$$= 0.0053 \ mol$$

HCl reacts with Na_2CO_3 and $NaHCO_3$ according to the following equation.

$$2HCl + Na_2CO_3 \rightarrow 2NaCl + H_2O + CO_2$$

2 mol 1 mol

$$HCl + NaHCO_3 \rightarrow NaCl + H_2O + CO_2$$

1 mol 1 mol

1 mol of Na_2CO_3 reacts with 2 mol of HCl.

Therefore, 0.0053 mol of Na_2CO_3 reacts with 2×0.0053 mol = 0.0106 mol.

Similarly, 1 mol of NaHCO3 reacts with 1 mol of HCl.

Therefore, 0.0053 mol of NaHCO₃ reacts with 0.0053 mol of HCl.

Total moles of HCl required = (0.0106 + 0.0053) mol

 $= 0.0159 \ mol$

In 0.1Mof HCl

0.1mol of HCl is preset in 1000 mL of the solution.

Therefore, 0.0159 mol of $_{HCl}$ is present in $\frac{1000 \times 0.0159}{0.1}$ mol

 $= 159 \, mL$ of the solution

Hence, 159mL of 0.1 M of HCl is required to react with $_{1g}$ mixture of Na_2CO_3 and $NaHCO_3$, containing equimolar amounts of both.

Q: 7. A solution is obtained by mixing 300gof25% solution and 400gof40% solution by mass. Calculate the mass percentage of the resulting solution.

Answer:

Total amount of solute present in the mixture is given by,

$$300 \times \frac{25}{100} + 400 \times \frac{40}{100}$$
$$= 75 + 160$$
$$= 235g$$

Total amount of solution = 300 + 400 = 700g

Therefore, mass percentage (w/w) of the solute in the resulting solution, $=\frac{235}{700}\times100\%$

$$= 33.57\%$$

And, mass percentage (w/w) of the solvent in the resulting solution,

$$= (100 - 33.57) \%$$