FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class 12 NCERT Solutions: Chapter 2 Solutions Part 5

Doorsteptutor material for CBSE/Class-12 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Exercise: 2
Q: 1. Define the term solution. How many types of solutions are formed? Write briefly about each type with an example.

Answer:
Homogeneous mixtures of two or more than two components are known as solutions.
There are three types of solutions.
(i) Gaseous solution:

The solution in which the solvent is a gas is called a gaseous solution. In these solutions, the solute may be liquid, solid, or gas. For example, a mixture of oxygen and nitrogen gas is a gaseous solution.
(ii) Liquid solution:

The solution in which the solvent is a liquid is known as a liquid solution. The solute in these solutions may be gas, liquid, or solid. For example, a solution of ethanol in water is a liquid solution.
(iii) Solid solution:

The solution in which the solvent is a solid is known as a solid solution. The solute may be gas, liquid or solid. For example, a solution of copper in gold is a solid solution.

Q: 2. Give an example of solid solution in which the solute is a gas.
Answer:
In case a solid solution is formed between two substances (one having very large particles and the other having very small particles) , an interstitial solid solution will be formed. For example, a solution of hydrogen in palladium is a solid solution in which the solute is a gas.

Q3: Define the following terms:
(i) Mole fraction
(ii) Molality
(iii) Molarity
(iv) Mass percentage.

Answer:
(i) Mole fraction:

The mole fraction of a component in a mixture is defined as the ratio of the number of moles of the component to the total number of moles of all the components in the mixture.

Mole fraction of a component $=\frac{\text { Number of moles of the component }}{\text { Total number of moles of all components }}$
Mole fraction is denoted by ' x '
If in a binary solution, the number of moles of the solute and the solvent are n_{A} and n_{B} respectively, then the mole fraction of the solute in the solution is given by,

$$
x_{A}=\frac{n_{A}}{n_{A}+n_{B}}
$$

Similarly, the mole fraction of the solvent in the solution is given as:

$$
x_{B}=\frac{n_{B}}{n_{A}+n_{B}}
$$

(ii) Molality:

Molality (m) is defined as the number of moles of the solute per kilogram of the solvent. It is expressed as:

Molality $(\mathrm{m})=\frac{\text { Moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}$
(iii) Molarity:

Molarity (M) is defined as the number of moles of the solute dissolved in one Litre of the solution. It is expressed as:

Molarity (M) $=\frac{\text { Moles of solute }}{\text { Volume of solution in Liter }}$
(iv) Mass Percentage:

The mass percentage of a component of a solution is defined as the mass of the solute in grams present in 100 g of the solution. It is expressed as:

Mass \% of a component $=\frac{\text { Mass of component in solution }}{\text { Total mass of solution }} \times 100$
Q: 4. Concentrated nitric acid used in laboratory work is 68% nitric acid by mass in aqueous
solution. What should be the molarity of such a sample of the acid if the density of the solution is $1.504 g m L^{-1}$?

Molar mass of nitric acid $\left(\mathrm{HNO}_{3}\right)=1 \times 1+1 \times 14+3 \times 16=63 \mathrm{gmol}^{-1}$
Then, number of moles of $\mathrm{HNO}_{3}=\frac{68}{63} \mathrm{~mol}$

$$
1.079 \mathrm{~mol}
$$

Given Density of solution $=1.504 \mathrm{gmL}^{-1}$
\therefore Volume of 100 g solution $=\frac{100}{1.504} \mathrm{ml}$

$$
\begin{aligned}
& =66.49 \mathrm{~mL} \\
& =66.49 \times 10^{-3} L
\end{aligned}
$$

$$
\begin{aligned}
& \text { Molarity of solution }=\frac{1.079 \mathrm{~mol}}{66.49 \times 10^{-3} \mathrm{~L}} \\
& \quad=16.23 \mathrm{M}
\end{aligned}
$$

