FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class 12 NCERT Solutions: Chapter 2 Solutions Part 4

Doorsteptutor material for CBSE/Class-12 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Q: 9. Vapour pressure of pure water at 298K is 23.8 mm Hg. 50 g of urea (NH_2CONH_2) is dissolved in 850g of water. Calculate the vapour pressure of water for this solution and its relative lowering.

Answer:

It is given that vapour pressure of water, $P_1^0 = 23.8 \text{mm}$ of Hg

Weight of water taken, $w_1 = 850g$

Weight of urea taken, $w_2 = 50g$

Molecular weight of water, $M_1 = 18 gmol^{-1}$

Molecular weight of urea, $M2 = 60gmol^{-1}$

Now, we have to calculate vapour pressure of water in the solution. We take vapour pressure as $_{p_1}$.

Now, from Raoult's law, we have:

$$\frac{p_1^0 - p_1}{P_1^0} = \frac{n_2}{n_1 + n_2}$$

$$\Rightarrow \frac{p_1^0 - p_1}{p_1^0} = \frac{\frac{w_2}{M_2}}{\frac{w_1}{M_1} + \frac{w_2}{M_2}}$$

$$\Rightarrow \frac{23.8 - p_1}{23.8} = \frac{\frac{50}{60}}{\frac{850}{18} + \frac{50}{60}}$$

$$\Rightarrow \frac{23.8 - p_1}{23.8} = \frac{0.83}{47.22 + 0.83}$$

$$\Rightarrow \frac{23.8 - p_1}{23.8} = 0.0173$$

$$\Rightarrow p_1 = 23.4 \text{mm of Hg}$$

Hence, the vapour pressure of water in the given solution is $23.4\,$ mm of Hg and its relative lowering is $0.0173\,$.

Q: 10. Boiling point of water at $_{750}$ mm Hg is $_{99.63^{\circ}C}$. How much sucrose is to be added to 500 g of water such that it boils at $_{100^{\circ}}$ C. Molal elevation constant for water is $_{0.52K\ kgmol}^{-1}$.

Answer:

Here, elevation of boiling point $\Delta T_b = (100 + 273) - (99.63 + 273)$

= 0.37K

Mass of water, $w_l = 500g$

Molar mass of sucrose $(C_{12}H_{22}O_{11}), M_2 = 11 \times 12 + 22 \times 1 + 11 \times 16$

$$=342gmol^{-1}$$

Molal elevation constant, $K_b = 0.52 K \, kgmol^{-1}$

We know that:

$$\Delta T_b = \frac{K_b \times 1000 \times w_2}{M_2 \times w_1}$$

$$\Rightarrow w_2 = \frac{\Delta T_b \times M_2 \times w_1}{K_b \times 1000}$$

$$= \frac{0.37 \times 342 \times 500}{0.52 \times 1000}$$

= 121.67g (Approximately)

Hence, 121.67 g of sucrose is to be added.

Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Q: 11. Calculate the mass of ascorbic acid (Vitamin C, $C_6H_8O_6$) to be dissolved in $_{75g}$ of acetic acid to lower its melting point by $1.5^{\circ}C$. $Kf = 3.9K \ kg \ mol - 1$.

Answer:

Mass of acetic acid, $w_1 = 75g$

Molar mass of ascorbic acid $(C_6H_8O_6)$, $M_2 = 6 \times 12 + 8 \times 1 + 6 \times 16$

$$= 176 gmol^{-}1$$

Lowering of melting point, $\Delta T_f = 1.5K$

We know that:

$$\Delta T_f = \frac{K_f \times w_2 \times 1000}{M_2 \times w_1}$$
$$= \frac{1.5 \times 176 \times 75}{3.9 \times 1000}$$

$$=5.08g$$
 (Approx)

Hence, 5.08g of ascorbic acid is needed to be dissolved.

None: There is a slight variation in this answer and the one given in the NCERT textbook.

Q: 12. Calculate the osmotic pressure in Pascal's exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in $450 \, mL$ of water at $37^{\circ}C$.

Answer:

It is given

Volume of water, V = 450 ml = 0.45 L

Temperature, T = (37 + 273) K = 310 K

Number of moles of the polymer, $n = \frac{1}{185000} mol$

We know that:

Osmotic pressure,
$$\pi = \frac{n}{V}RT$$

= $\frac{1}{185000}mol \times \frac{1}{0.45L} \times 8.314 \times 10^{3} Pa \ LK^{-1}mol^{-1} \times 310K$
= 30.98 Pa

= 31 Pa (Approximately)