FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace YouTube Channel [https://youtube.com/c/Examrace/]</u>

Chemistry Class 11 NCERT Solutions: Chapter 8 Redox Reactions Part 1

Glide to success with Doorsteptutor material for CBSE/Class-8: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-8/]- for all subjects of CBSE/Class-8.

- Q: 1. Assign oxidation numbers to the underlined elements in each of the following species
- (A) NaH_2PO_4
- (B) $NaHSO_4$
- (C) $H_4P_2O_7$
- (D) K_2MnO_4
- (E) CaO_{2}
- (F) $NaBH_4$
- (G) $H_2S_2O_7$
- (H) $KAl\left(\underline{SO_4}\right)_2.12H_2O$

Answer:

(A) NaH_2PO_4

Let the oxidation number of P be x.

We know that,

Oxidation number of Na = +1

Oxidation number of H = +1

Oxidation number of Q = -2

$$\Rightarrow \frac{+1}{Na} \frac{+1}{H_2} \frac{x}{P} \frac{-2}{O_4}$$

Then, we have

$$1 (+1) + 2 (+1) + 1 (x) + 4 (-2) = 0$$
$$\Rightarrow 1 + 2 + x - 8 = 0$$

$$\Rightarrow x = +5$$

Hence, the oxidation number of P is + 5

(B) $NaHSO_4$

+1 +1
$$x$$
 -2
 $Na H_2 S O_4$
1 (+1) + 1 (+1) + 1 (x) + 4 (-2) = 0
 \Rightarrow 1 + 1 + x - 8 = 0
 \Rightarrow x = +6

Hence, the oxidation number of S is + 6.

(C)
$$H_4 P_2 O_7$$

+1 x -2
 $H_4 P_2 O_7$

Then, we have

$$4(+1) + 2(x) + 7(-2) = 0$$

$$\Rightarrow 4 + 2x - 14 = 0$$

$$\Rightarrow 2x = +10$$

$$\Rightarrow x = +5$$

Hence, the oxidation number of P is + 5.

(D)
$$K_2 \underline{MnO_4}$$

+1 x -2 $K_2 Mn O_4$

Then, we have

$$2(+1) + x + 4(-2) = 0$$

$$\Rightarrow 2 + x = -8 = 0$$

$$\Rightarrow x = +6$$

Hence, the oxidation number of Mn is + 6.

(E)
$$CaO_2$$

+2 x
 CaO_2

Then, we have

$$(+2) + 2(x) = 0$$

$$\Rightarrow 2 + 2x = 0$$

$$\Rightarrow x = -1$$

Hence, the oxidation number of 0 is -1.

(F)
$$NaBH_4$$

+1 x -1
 $Na\ B\ H_4$

$$1 (+1) + 1 (x) + 4 (-1) = 0$$

 $\Rightarrow 1 + x - 4 = 0$
 $\Rightarrow x = +3$

Hence, the oxidation number of B is + 3.

(G)
$$H_2 \underline{S_2} O_7$$

+1 x -2
 $H_2 S_2 H_7$

Then, we have

$$2 + (+1) + 2(x) + 7(-2) = 0$$

$$\Rightarrow 2 + 2x - 14 = 0$$

$$\Rightarrow 2x = 12$$

$$\Rightarrow x = +6$$

Hence, the oxidation number of S + 6.

(H)
$$KAl\left(\underline{SO_4}\right)_2.12H_2O$$

+1 3+ $\begin{pmatrix} x & 2-\\ S & O_4 \end{pmatrix}_2.12 + 1 - 2$
 $K & Al \begin{pmatrix} S & O_4 \end{pmatrix}_2.12 + 1 - 2$

Then, we have

$$1 (+1) + 1 (+3) + 2 (x) + 8 (-2) + 24 (+1) + 12 (-2) = 0$$

$$\Rightarrow 1 + 3 + 2x - 16 + 24 - 24 = 0$$

$$\Rightarrow 2x = 12$$

$$\Rightarrow x = +6$$

Or,

We can ignore the water molecule, as it is a neutral molecule. Then, the sum of the oxidation numbers of all atoms of the water molecule may be taken as zero. Therefore, after ignoring the water molecule, we have

$$1 (+1) + 1 (+3) + 2 (x) + 8 (-2) = 0$$

$$\Rightarrow 1 + 3 + 2x - 16 = 0$$

$$\Rightarrow 2x = 12$$

$$\Rightarrow x = +6$$

Hence, the oxidation number of S is +6.