FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace YouTube Channel [https://youtube.com/c/Examrace/]</u>

Chemistry Class 11 NCERT Solutions: Chapter 6 Thermodynamics Part 1

Doorsteptutor material for CBSE/Class-7 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-7/]- for all subjects of CBSE/Class-7.

- Q: 1. Choose the correct answer. A thermodynamic state function is a quantity
- (i) Used to determine heat changes
- (ii) Whose value is independent of path
- (iii) used to determine pressure volume work
- (iv) Whose value depends on temperature only

Answer:

A thermodynamic state function is a quantity whose value is independent of a path. Functions like p, V, T etc. depend only on the state of a system and not on the path. Hence, alternative (ii) is correct.

- Q: 2. For the process to occur under adiabatic conditions, the correct condition is:
 - $(i) \Delta T = 0$
 - $(ii) \Delta p = 0$
 - (iii) q = 0
 - (iv) w = 0

Answer:

A system is said to be under adiabatic conditions if there is no exchange of heat between the system and its surroundings. Hence, under adiabatic conditions, q = 0,

Therefore, alternative (iii) is correct.

- Q: 3. The enthalpies of all elements in their standard states are:
- (i) Unity
- (ii) Zero
- (iii) < 0
- (iv) Different for each element

Answer:

The enthalpy of all elements in their standard state zero

Therefore, alternative (ii) is correct.

Q: 4. ΔU^{θ} of combustion of methane is $-X kj mol^{-1}$. The value of ΔU^{θ} is

(i) =
$$\Delta U^{\theta}$$

(ii)
$$> \Delta U^{\theta}$$

(iii)
$$< \Delta U^{\theta}$$

(iv)
$$= 0$$

Since
$$\Delta H^{\theta} = \Delta U^{\theta} + \Delta n_g RT$$
 and $\Delta U^{\theta} = -X \, kj \, mol^{-1}$,

$$\Delta H^{\theta} = (-X) + \Delta n_g RT.$$

$$\Rightarrow \Delta H^{\theta} < \Delta U^{\theta}$$

Therefore, alternative (iii) is correct.

Q: 5. the enthalpy of combustion of methane, graphite and dihydrogen at 298 Kare, $-890.3 \ kj \ mol^{-1} - 393.5 \ kj \ mol^{-1}$, and $-285.8 \ kj \ mol^{-1}$ respectively. Enthalpy of formation of $CH_{4(g)}$ will be

(i)
$$-74.8 \ kj \ mol^{-1}$$

$$(ii) - 52.27 \ kj \ mol^{-1}$$

(iii)
$$+74.8 \ kj \ mol^{-1}$$

(iv)
$$+52.26 \ kj \ mol^{-1}$$

Answer:

According to the question,

(i)
$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$

$$\Delta H = -890.3kj \, mol^{-1}$$

(ii)
$$C_{(g)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$\Delta H = -393.5 \, kj \, mol^{-1}$$

(iii)
$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$$

$$\Delta H = -285.8 \, kj \, mol^{-1}$$

Thus, the desired equation is the one that represents the formation of $\mathit{CH}_{4(g)}$ i.e.,

$$C_{(g)} + 2H_{2(g)} \rightarrow CH_{4(g)}$$

$$\Delta_f H_{CH_4} = \Delta_e H_e + 2 \Delta_e H_{H2} - \Delta_e H_{CO_2}$$

$$= [-393.5 + 2(-285.8) - (-890.3)] \text{ kj mol}^{-1}$$

$$= -74.8 \ kj \ mol^{-1}$$

$$\therefore$$
 Enthalpy of formation of $CH_{4(g)} = -74.8 \text{ kj mol}^{-1}$

Hence, alternative (i) is correct.

- Q: 6. A reaction, $A + B \rightarrow C + D + q$ is found to have positive entropy change. The reaction will be
- (i) Possible at high temperature
- (ii) Possible only at low temperature
- (iii) Not possible at any temperature
- (iv) Possible at any temperature

Answer:

For a reaction to be spontaneous, ΔG should be negative.

$$\Delta G = \Delta H - T \Delta S$$

According to the question, for the given reaction,

$$\Delta S = \text{positive}$$

 ΔH = negative (since heat is evolved)

$$\Rightarrow \Delta G = \text{negative}$$

Therefore, the reaction is spontaneous at any temperature.

Hence, alternative (iv) is correct.