FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit <u>Examrace YouTube</u>

Channel [https://youtube.com/c/Examrace/]

Chemistry Class 11 NCERT Solutions: Chapter 4 Chemical Bonding and Molecular Structure Part 5

Doorsteptutor material for CBSE/Class-6 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-6/]- for all subjects of CBSE/Class-6.

Q: 22. Explain why BeH_2 molecule has a zero dipole moment although the Be-H bonds are polar.

Answer:

The Lewis structure for BeH_2 is as follows:

H : Be : H

There is no lone pair at the central atom (Be) and there are two bond pairs. Hence, BeH_2 is of the type AB_2 . It has a linear structure.

Dipole moments of each H-Be bond are equal and are in opposite directions. Therefore, they nullify each other. Hence, BeH_2 molecule has zero dipole moment.

Q: 23. Which out of NH_3 and NF_3 has higher dipole moment and why?

Answer:

In both molecules i.e., NH_3 and NF_3 , the central atom (N) has a lone pair electron and there are three bond pairs. Hence, both molecules have a pyramidal shape. Since fluorine is more electronegative than hydrogen, it is expected that the net dipole moment of NF_3 is greater than NH_3 . However, the net dipole moment of NH_3 (1.46 D) is greater than that of NH_3 (0.24 D).

This can be explained on the basis of the directions of the dipole moments of each individual bond in NF_3 and NH_3 . These directions can be shown as:

Thus, the resultant moment of the N-H bonds add up to the bond moment of the lone pair (the two being in the same direction), whereas that of the three N-F bonds partly cancels the moment of the lone pair.

Hence, the net dipole moment of NF_3 is less than that of NH_3 .

Q: 24. What is meant by hybridization of atomic orbitals? Describe the shapes of sp, sp^2, sp^3 hybrid orbitals.

Answer:

Hybridization is defined as an intermixing of a set of atomic orbitals of slightly different energies, thereby forming a new set of orbitals having equivalent energies and shapes. For example, one 2s-orbital hybridizes with two 2p-orbitals of carbon to form three new sp^2 hybrid orbitals.

These hybrid orbitals have minimum repulsion between their electron pairs and thus, are more stable. Hybridization helps indicate the geometry of the molecule.

Shape of sp hybrid orbitals: sp hybrid orbitals have a linear shape. They are formed by the intermixing of s and p orbitals as:

Shape of sp^2 hybrid orbitals:

 sp^2 hybrid orbitals are formed as a result of the intermixing of one s-orbital and two 2p- orbitals. The hybrid orbitals are oriented in a trigonal planar arrangement as:

figure:

Four $_{sp^3}$ hybrid orbitals are formed by intermixing one s-orbital with three p-orbitals. The four $_{sp^3}$ hybrid orbitals are arranged in the form of a tetrahedron as:

Figure:

Q: 25. Describe the change in hybridization (if any) of the Al atom in the following reaction. $AICl_3 + Cl^- \rightarrow AICl_4^-$

The valence orbital picture of aluminium in the ground state can be represented as:

The orbital picture of aluminium in the excited state can be represented as:

Hence, it undergoes sp^2 hybridization to give a trigonal planar arrangement (in AlC I_3). To form $AlCI_4^-$, the empty $3p_z$ orbital also gets involved and the hybridization changes from $sp^2 tosp^3$. As a result, the shape gets changed to tetrahedral.

Q: 26 Is there any change in the hybridisation of B and N atoms as a result of the following reaction?

$$BF_3 + NH_3 \rightarrow F_3 B.NH_3$$

Answer:

Boron in BF_3 is sp^2 hybridized. The orbital picture of boron in the excited state can be shown as:

Nitrogen atom in $_{NH_{3}}$ is $_{sp^{3}}$ hybridized. The orbital picture of nitrogen can be represented as:

After the reaction has occurred, an adduct F_3BNH_3 is formed as hybridization of 'B' changes to sp^3 . However, the hybridization of 'N' remains intact.