FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com

[https://www.doorsteptutor.com] and for free video lectures visit Examrace
YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class 11 NCERT Solutions: Chapter 2 Structure of Atom Part 9

Q: 25. An electron is in one of the 3d orbitals. Give the possible values of n, l and $_{m_1}$ for this electron.

Answer:

For the 3d orbital:

Principal quantum number (n) = 3

Azimuthal quantum number (l) = 2

Magnetic quantum number $(m_l) = -2, -1, 0, 1, 2$

Q: 26. An atom of an element contains 29 electrons and 35 neutrons. Deduce (i) the number of protons and (ii) the electronic configuration of the element.

Answer:

- (i) For an atom to be neutral, the number of protons is equal to the number of electrons.
 - \therefore Number of protons in the atom of the given element = 29
- (ii) The electronic configuration of the atom is

$$1s^22s^22p^63s^23p^64s^23d^{10}$$
.

Q: 27. Give the number of electrons in the species H_2^+, H_2 and O_2^+

Answer:

 H_2^+ :

Number of electrons present in hydrogen molecule $(H_2) = 1 + 1 + 2$

 \therefore Number of electrons in $H_2^+ = 2 - 1 = 1$

 O_2^+ :

Number of electrons present in oxygen molecule $(O_2) = 8 + 8 = 16$

 \therefore Number of electrons in $O_2^+ = 16 - 1 = 15$

Q: 28 (i) An atomic orbital has n = 3. what are the possible values of $land m_1$?

- (ii) List the quantum numbers m_1 and l of electrons for 3d orbital.
- (iii) Which of the following orbitals are possible?

$$1p, 2s, 2p$$
and $3f$

Answer:

$$(i) n = 3$$
 (Given)

For a given value of n, lcan have values from0to (n-1)

$$\therefore$$
 For $n = 3$

$$l = 0, 1, 2$$

For a given value of l, m_l can have $\begin{pmatrix} 2 \\ +1 \end{pmatrix}$ values.

For
$$l = 0, m = 0$$

$$l = 1, m = -1, 0, 1$$

$$l = 2, m = -2, -1, 0, 1, 2$$

$$\therefore$$
 For $n=3$

$$l = 0, 1, 2$$

$$m_0 = 0$$

$$m_1 = -1, 0, 1$$

$$m_2 = -2, -1, 0, 1, 2.$$

(ii) For 3d orbital, l = 2

For a given value of l, m_1 can have (2l + 1) values i.e., 5 values

$$\therefore$$
 For $l=2$

$$m_2 = -2, -1, 0, 1, 2$$

(iii) Among the given orbitals only 2 s and 2p are possible. 1p and 3 f cannot exist.

For p-orbital l = 1.

For a given value of n, l can have values from zero to (n-1).

 \therefore For *l* is equal to 1, the minimum value of *n* is 2.

Similarly,

For f-orbital, l = 4

For l = 4, the minimum value of n is s = 1.

Hence, 1p and 3 f do not exist.

Q: 29. Using s, p, d notations, describe the orbital with the following quantum numbers.

(a)
$$n = 1, l = 0$$
;

(b)
$$n = 3$$
; $l = 1$

$$(c) n = 4; l = 2;$$

$$(d) n = 4; l = 3.$$

Answer:

(a)
$$n = 1, l = 0$$
 (Given)

The orbital is 1s

(b) For
$$n = 3$$
 and $l = 1$

The orbital is $_{3p}$.

(c) For
$$n = 4$$
 and $l = 2$

The orbital is 4d.

(d) For
$$n = 4$$
and $l = 3$

The orbital is $_{4f}$.

Q: 30. Explain giving reasons, which of the following sets of quantum numbers are not possible.

$$a \quad n = 0 \quad l = 0 \quad m_l = 0 \quad m_s = +\frac{1}{2}$$

$$b \quad n = 1 \quad l = 0 \quad m_l = 0 \quad m_s = -\frac{1}{2}$$

$$c \quad n=1 \quad l=1 \quad m_l=0 \quad m_s=+\frac{1}{2}$$

$$d \quad n=2 \quad l=1 \quad m_l=0 \quad m_s=-\frac{1}{2}$$

$$e \quad n = 3 \quad l = 3 \quad m_l = -3 \quad m_s = +\frac{1}{2}$$

$$f \quad n = 3 \quad l = 1 \quad m_l = 0 \quad m_s = +\frac{1}{2}$$

Answer:

- (a) The given set of quantum numbers is not possible because the value of the principal quantum number (n) cannot be zero.
- (b) The given set of quantum number is possible.
- (c) The given set of quantum numbers is not possible.

For a given value of n, 'l' can have values from zero to (n-1).

For
$$n = 1, l = 0$$
 and not 1.

- (d) The given set of quantum numbers is possible.
- (e) The given set of quantum numbers is not possible.

For
$$n = 3$$

$$l = 0 \text{ to } (3 - 1)$$

$$l = 0$$
 to 2 i.e., 0,1, 2

(f) The given set of quantum numbers is possible.