FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace YouTube Channel [https://youtube.com/c/Examrace/]</u>

NCERT Class 12- Mathematics: Chapter – 9 Differential Equations Part 8

Get unlimited access to the best preparation resource for CBSE/Class-12: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Question 17:

Find the general solution of the differential equation $(1+y^2) + (x-e^{\tan -ly}) \frac{dy}{dx} = 0$

Answer:

$$2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$$

Question 18:

Find the general solution of $y^2 dx + (x^2 - xy + y^2) dy = 0$.

Answer:

Given, differential equation is

$$y^{2} dx + (x^{2} - xy + y^{2}) dy = 0$$

$$\Rightarrow y^{2} dx = -(x^{2} - xy + y^{2}) dy$$

$$\Rightarrow y^{2} \frac{dx}{dy} = -(x^{2} - xy + y^{2})$$

Dividing both sides by y^2 , we get

$$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = -\left(\frac{x^2}{y^2} - \frac{x}{y} + 1\right) \dots (i)$$

Which is a homogeneous differential equation

$$Put \frac{x}{y} = vorx = vy$$

$$\Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$$

On substituting these value in Eq. (i), we get

$$v + y \frac{dv}{dy} = -\left[v^2 - v + 1\right]$$

$$\Rightarrow y \frac{dv}{dy} = -v^2 - 1 \Rightarrow \frac{dv}{v^2 + 1} = -\frac{dy}{y}$$

On integrating both sides, we get

$$\int \frac{\mathrm{d}v}{v^2+1} \int -\frac{\mathrm{d}y}{v}$$

$$\tan^{-1}(v) = -\log y + C$$

$$\Rightarrow \tan^{-1}\left(\frac{x}{y}\right) + \log y = C\left[\because v = \frac{x}{y}\right]$$

Question 19:

Solve: (x + y)(dx-dy) = dx + dy. [**Hint**: Substitute x + y = z after separating dx and dy]

Answer:

$$\Rightarrow x + y = Ke^{z - y} \left[\because K = \frac{1}{C} \right]$$

Question 20:

Solve:
$$2(y+3)-xy\frac{dy}{dx} = 0$$
, given that $y(1) = -2$

Answer:

$$x^2(y+3)^3 = e^{y+2}$$

Question 21:

Solve the differential equation $dy = \cos x (2 - y \csc x) dx$ given that y = 2 when $x = \frac{\pi}{2}$.

Answer:

$$y\sin x = \frac{-\cos 2x}{2} + \frac{3}{2}$$

Question 22:

Form the differential equation by eliminating A and B in $Ax^2 + By^2 = 1$.

Answer:

$$xyy'' + x(y')^2 - yy' = 0$$

Question 23:

Solve the differential equation $(1 + y^2) \tan^{-1} x dx + 2y (1 + x^2) dy = 0$.

Answer:

$$\frac{1}{2} \left(\tan^{-1} x \right)^2 + \log \left(1 + y^2 \right) = c$$

Question 24:

Find the differential equation of system of concentric circles with centre (1,2).

Answer:

$$(x-1)^{2} + (y-2)^{2} = a^{2}$$

$$\Rightarrow x^{2} + 1 - 2x + y^{2} + 4 - 4y = a^{2}$$

$$\Rightarrow x^{2} + y^{2} - 2x - 4y + 5 = a^{2} \dots (i)$$

On differentiating Eq. (i) w.r.t.x, we get

$$2x + 2y \frac{dy}{dx} - 2 - 4 \frac{dy}{dx} = 0$$

$$\Rightarrow (2x - 4) \frac{dy}{dx} + 2x - 2 = 0$$

$$\Rightarrow (y - 2) \frac{dy}{dx} + (x - 1) = 0$$