FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit <u>Examrace YouTube Channel [https://youtube.com/c/Examrace/]</u>

NCERT Class 12- Mathematics: Chapter – 9 Differential Equations Part 17

Get unlimited access to the best preparation resource for CBSE/Class-12: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Question 76: Fill in the blanks of the following (i to xi)

(i) The degree of the differential equation $\frac{d^2y}{dx^2} + e^{\frac{dy}{dx}} = 0$ is _____.

Answer: Not defined

(ii) The degree of the differential equation $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = x$ is _____.

Answer: Not defined

(iii) The number of arbitrary constants in the general solution of a differential equation of order three is _____.

Answer: (3)

(iv)
$$\frac{dy}{dx} + \frac{y}{x \log x} = \frac{1}{x}$$
 is an equation of the type _____.

Answer:
$$\frac{dy}{dx} + py = Q$$

(v) General solution of the differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is given by _____.

Answer:

$$x \cdot e^{\int P_1 dy} = \int Q_1 \left\{ e^{\int P_1 dy} \right\} dy + C$$

(vi) The solution of the differential equation $\frac{x dy}{dx} + 2y = x^2$ is_____.

Answer:

$$y = \frac{x^2}{4} + Cx^{-2}$$

(vii) The solution of $(1 + x^2) \frac{dy}{dx} + 2xy - 4x^2 = 0$ is_____.

Answer:

$$y = \frac{4x^3}{3(1+x^2)} + C(1+x^2)^{-1}$$

(viii) The solution of the differential equation ydx + (x + xy) dy = 0 is _____.

Answer:

$$xy = Ae^{-y}$$

(ix) General solution of $\frac{dy}{dx} + y = \sin x$ is _____.

Answer:

$$y = \frac{1}{2}(\sin x - \cos x) + C.e^{-x}$$

(x) The solution of differential equation $\cot y dx = x dy$ is _____.

Answer:

$$x = C \sec y$$

(xi) The integrating factor of $\frac{dy}{dx} + y = \frac{1+y}{x}$ is _____.

Answer:

$$e^x . e^{-\log x} = \frac{e^x}{x}$$

Question 77: State True or False for the following:

(i) Integrating factor of the differential of the form $\frac{dx}{dy} + p_1 x = Q_1$ is given by $e^{\int p_1 dy}$.

Answer: True

(ii) Solution of the differential equation of the type $\frac{dx}{dy} + p_1 x = Q_1$ is given by $x.I.F. = (I.F) Q_1 dy$.

Answer: True

(iii) Correct substitution for the solution of the differential equation of the type $\frac{dy}{dx}f(x,y)$, where f(x,y) is a homogeneous function of zero degree is y = vx.

Answer: True

(iv) Correct substitution for the solution of the differential equation of the type $\frac{dx}{dy}g(x,y)$ where g(x,y) is a homogeneous function of the degree zero is x=vy.

Answer: True

(v) Number of arbitrary constants in the particular solution of a differential equation of order two is two.

Answer: False

(vi) The differential equation representing the family of circles $x^2 + (y-a)^2 = a^2$ will be of order two.

Answer: False

(vii) The solution of $\frac{dy}{dx} = \left(\frac{y}{x}\right)^{\frac{1}{3}} isy^{\frac{3}{2}} - x^{\frac{2}{3}} = C$

Answer: True

(viii) Differential equation representing the family of curves $y = e^x (A \cos x + B \sin x)$ is

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{2\mathrm{d}y}{\mathrm{d}x} + 2y = 0$$

Answer: True

(ix) The solution of the differential equation $\frac{dy}{dx} = \frac{x+2y}{x}isx + y = kx^2$.

Answer: True

(x) Solution of
$$\frac{x dy}{dx} = y + x \tan \frac{y}{x} is \sin \left(\frac{y}{x}\right) = cx$$

Answer: True

(xi) The differential equation of all non-horizontal lines in a plane is $\frac{d^2x}{dy^2} = 0.\frac{d^2y}{dx^2} = 0$

Answer: True