FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 12- Mathematics: Chapter - 9 Differential Equations Part 10

Get unlimited access to the best preparation resource for CBSE/Class-12 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

Question 28:

Find the general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=\sin 2 x$.

Answer:

$$
\Rightarrow y=-\frac{1}{13}(2 \cos 2 x+3 \sin 2 x)+C e^{3 x}
$$

Question 29:

Find the equation of a curve passing through $(2,1)$ if the slope of the tangent to the curve at any point (x, y) is $\frac{x^{2}+y^{2}}{2 x y}$.

Answer:

It is given that, the slope of tangent to the curve at point (x, y) is $\frac{x^{2}+y^{2}}{2 x y}$

$$
\begin{align*}
& \therefore\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{(x, y)}=\frac{x^{2}+y^{2}}{2 x y} \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right) . . \tag{i}
\end{align*}
$$

Which is homogeneous differential equation.
Put $y=v x$

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

On substituting these values in Eq. (i), we get

$$
\begin{aligned}
& v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{2}\left(\frac{1}{v}+v\right) \\
& \Rightarrow v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{2}\left(\frac{1+v^{2}}{v}\right) \\
& \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1+v^{2}}{2 v}-v \\
& \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1+v^{2}-2 v^{2}}{2 v} \\
& \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1+v^{2}}{2 v}
\end{aligned}
$$

$$
\Rightarrow \frac{2 v}{1+v^{2}} \mathrm{~d} v=\frac{\mathrm{d} x}{x}
$$

On integrating both sides, we get

$$
\int \frac{2 v}{1+v^{2}} \mathrm{~d} v=\int \frac{\mathrm{d} x}{x}
$$

Put $1-v^{2}=t$ in LHS, we get

$$
\begin{aligned}
& -2 v \mathrm{~d} v=\mathrm{d} t \\
& \Rightarrow-\int \frac{\mathrm{d} t}{t}=\int \frac{\mathrm{d} x}{x} \\
& \Rightarrow-\log t=\log x+\log C \\
& \Rightarrow-\log \left(1-v^{2}\right)=\log x+\log C \\
& \Rightarrow-\log \left(1-\frac{y^{2}}{x^{2}}\right)=\log x+\log C \\
& \Rightarrow-\log \left(\frac{x^{2}-y^{2}}{x^{2}}\right)=\log x+\log C \\
& \Rightarrow \frac{x^{2}}{x^{2}-y^{2}}=C x
\end{aligned}
$$

Since, the curve passes through the point $(2,1)$

$$
\therefore \frac{(2)^{2}}{(2)^{2}-(1)^{2}}=C(2) \Rightarrow C=\frac{2}{3}
$$

So, the required solution is $2\left(x^{2}-y^{2}\right)=3 x$

Question 30:

Find the equation of the curve through the point $(1,0)$ if the slope of tangent to the curve at any point (x, y) is $\frac{y-1}{x^{2}+x}$

Answer:

It is given that, slope of tangent to the curve at any point (x, y) is $\frac{y-1}{x^{2}+x}$

$$
\begin{aligned}
& \therefore\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{(x . y)}=\frac{y-1}{x^{2}+x} \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{y-1}{x^{2}+x} \\
& \Rightarrow \frac{\mathrm{~d} y}{y-1}=\frac{\mathrm{d} x}{x^{2}+x}
\end{aligned}
$$

On integrating both sides, we get

$$
\begin{aligned}
& \int \frac{\mathrm{d} y}{y-1}=\int \frac{\mathrm{d} x}{x^{2}+x} \\
& \Rightarrow \int \frac{\mathrm{~d} y}{y-1}=\int \frac{\mathrm{d} x}{x(x+1)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \int \frac{\mathrm{d} y}{y-1}=\int\left(\frac{1}{x}-\frac{1}{x+1}\right) \mathrm{d} x \\
& \Rightarrow \log (y-1)=\log x-\log (x+1)+\log C \\
& \Rightarrow \log (y-1)=\log \left(\frac{x C}{x+1}\right)
\end{aligned}
$$

Since, the given curve passes through point (1,0)

$$
\therefore 0-1=\frac{1 . C}{1+1} \Rightarrow C=-2
$$

The particular solution is $y-1=\frac{-2 x}{x+1}$

$$
\begin{aligned}
& \Rightarrow(y-1)(x+1)=-2 x \\
& \Rightarrow(y-1)(x+1)+2 x=0
\end{aligned}
$$

