FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 12- Mathematics: Chapter - 5 Continuity and Differentiability Part 1

Get unlimited access to the best preparation resource for CBSE/Class-12 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

5.1 Overview

5.1. 1 Continuity of a function at a point

Let, be a real function on a subset of the real numbers and let be a point in the domain of , Then is continuous at if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

More elaborately, if the left hand limit, right hand limit and the value of the function at $x=c$ exist and are equal to each other, i.e.. ,

$$
\lim _{x \rightarrow c} f(x)=f(c) \lim _{x \rightarrow c} f(x)
$$

Then, is said to be continuous at $x=c$.

5.1. 2 Continuity in an interval

(i) is said to be continuous in an open interval (a, b) if it is continuous at every point in this interval.
(ii) is said to be continuous in the closed interval ${ }_{[a, b]}$ if

- is continuous in (a,b)
- $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
- $\lim _{x \rightarrow a^{-}} f(x)=f(b)$

5.1. 3 Geometrical meaning of continuity

(i) Function, will be continuous at $x=c$ if there is no break in the graph of the function at the point (c, $f(c))$.
(ii) In an interval, function is said to be continuous if there is no break in the graph of the function in the entire interval.

5.1. 4 Discontinuity

The function, will be discontinuous at $x=a$ in any of the following cases:
(i) $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist but are not equal.
(iii) $f(a)$ is not defined.

5.1. 5 Continuity of some of the common functions

	Function $f(x)$	Interval in which is continuous
1.	The constant function, i.e.. $f(x)=c$	R
2.	The identity function, i.e.. $f(x)=x$	R
3.	The polynomial function, i.e.. $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}$	R
4.	$\|x-a\|$	$(-\infty, \infty)$
5.	x^{n}, n is a positive integer	$(-\infty, \infty)-\{0\}$
6.	$\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials in	$R-\{x: q(x)=0\}$
7.	$\sin x, \cos x$	R
8.	$\tan x, \sec x$	$R-\left\{(2 n+1) \frac{\pi}{2}: n \in Z\right\}$
9.	$\cot x, \operatorname{cosec} x$	$R-\{n \pi: n \in Z\}$
10.	e^{x}	${ }^{R}$
11	$\log x$	$(0, \infty)$
12	The inverse trigonometric functions, i.e., $\sin ^{-1} x, \cos ^{-1} x$ etc	In their respective domains
Continuity of Some of the Common Functions		

5.1. 6 Continuity of composite functions

Let, and be real valued functions such that (fog) is defined at a. If is continuous at a and f is continuous at $g_{(a)}$, then (fog) is continuous at a.

5.1. 7 Differentiability

The function defined by $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, wherever the limit exists, is defined to be the derivative of, at . In other words, we say that a function, is differentiable at a point in its domain if both $\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}$, called left hand derivative, denoted by $L f^{\prime}(c)$, and $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$, called right hand derivative, denoted by $R f^{\prime}(c)$, are finite and equal.
(i) The function $y=f(x)$ is said to be differentiable in an open interval (a, b) if it is differentiable at every point of (a, b)
(ii) The function $y=f(x)$ is said to be differentiable in the closed interval $[a, b]$ if $R f^{\prime}(a)$ and $L f^{\prime}(b)$ exist and $f^{\prime}(x)$ exists for every point of (a, b).
(iii) Every differentiable function is continuous, but the converse is not true

5.1. 8 Algebra of derivatives

If ${ }_{u, v}$ are functions of , then
(i) $\frac{\mathrm{d}(u \pm v)}{\mathrm{d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} \pm \frac{\mathrm{d} v}{\mathrm{~d} x}$
(ii) $\frac{\mathrm{d}}{\mathrm{d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
(iii) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{u}{v}\right)=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$
5.1. 9 Chain rule is a rule to differentiate composition of functions. Let $f=v o u$. If

$$
i=u(x) \text { and both } \frac{\mathrm{d} t}{\mathrm{~d} x} \text { and } \frac{\mathrm{d} v}{\mathrm{~d} t} \text { exist then } \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d} v}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}
$$

5.1. 10 Following are some of the standard derivatives (in appropriate domains)

1. $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
2. $\frac{\mathrm{d}}{\mathrm{d} x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$
3. $\frac{\mathrm{d}}{\mathrm{d} x}\left(\tan ^{-1} x\right)=\frac{1}{1-x^{2}}$
4. $\frac{\mathrm{d}}{\mathrm{d} x}\left(\cot ^{-1} x\right)=\frac{-1}{1-x^{2}}$
5. $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
6. $\frac{\mathrm{d}}{\mathrm{d} x}\left(\operatorname{cosec}^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
