FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 12- Mathematics: Chapter - 13 Probability Part 1

Get top class preparation for CBSE/Class-12 right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

13.1 Overview

13.1. 1 Conditional Probability

If E and F are two events associated with the same sample space of a random experiment, then the conditional probability of the event E under the condition that the event F has occurred, written as $P(E \mid F)$, is given by

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}, P(F) \neq 0
$$

13.1. 2 Properties of Conditional Probability

Let E and F be events associated with the sample space S of an experiment. Then:
(i) $P(S \mid F)=P(F \mid F)=1$
(ii) $P[(A \cup B) \mid F]=P(A \mid F)+P(B \mid F)-P[(A \cap B \mid F)]$, where A and B are any two events associated with S .
(iii) $P\left(E^{\prime} \mid F\right)=1-P(E \mid F)$

13.1. 3 Multiplication Theorem on Probability

Let E and F be two events associated with a sample space of an experiment. Then

$$
\begin{aligned}
& P(E \cap F)=P(E) P(F \mid E), P(E) \neq 0 \\
& =P(F) P(E \mid F), P(F) \neq 0
\end{aligned}
$$

If E, F and G are three events associated with a sample space, then

$$
P(E \cap F \cap G)=P(E) P(F \mid E) P(G \mid E \cap F)
$$

13.1. 4 Independent Events

Let E and F be two events associated with a sample space S . If the probability of occurrence of one of them is not affected by the occurrence of the other, then we say that the two events are independent. Thus, two events E and F will be independent, if
(a) $P(F \mid E)=P(F)$ provided $P(E) \neq 0$
(b) $P(E \mid F)=P(E), \operatorname{provided} P(F) \neq 0$

Using the multiplication theorem on probability, we have
(c) $P(E \cap F)=P(E) P(F)$

Three events A, B and C are said to be mutually independent if all the following conditions hold:

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \\
& P(A \cap C)=P(A) P(C) \\
& P(B \cap C)=P(B) P(C)
\end{aligned}
$$

and $P(A \cap B \cap C)=P(A) P(B) P(C)$

13.1. 5 Partition of a Sample Space

A set of events $E_{1}, E_{2}, \ldots, E_{n}$ is said to represent a partition of a sample space S if
(a) $E_{i} \cap E_{j}=\phi, i \neq j ; i, j=1,2,3, \ldots, n$
(b) $E_{i} \cup E_{2} \cup \ldots \cup E_{n}=S$, and
(c) Each $E_{i} \neq \phi$, i.e, $P\left(E_{i}\right)>$ 0for all $i=1,2, \ldots, n$

13.1. 6 Theorem of Total Probability

Let $\left\{E_{1}, E, \ldots, E_{n}\right\}$ be a partition of the sample space S. Let A be any event associated with S, then

$$
P(A)=\sum_{j-1}^{n} P\left(E_{j}\right) P\left(A \mid E_{j}\right)
$$

13.1. 7 Bayes' Theorem

If $E_{1}, E_{2}, \ldots, E_{n}$ are mutually exclusive and exhaustive events associated with a sample space, and A is any event of non-zero probability, then

$$
P(E \mid A)=\frac{P\left(E_{i}\right) P\left(A \mid E_{i}\right)}{\sum_{i-1}^{n} P\left(E_{i}\right) P\left(A \mid E_{i}\right)}
$$

13.1. 8 Random Variable and its Probability Distribution

A random variable is a real valued function whose domain is the sample space of a random experiment.

The probability distribution of a random variable X is the system of numbers

Random Variable and Its Probability Distribution
Where $p_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} P_{i}=1$

13.1. 9 Mean and Variance of a Random Variable

Let ${ }_{x}$ be a random variable assuming values $x_{1}, x_{2} \ldots, x_{n}$ with probabilities $p_{1}, p_{2}, \ldots, p_{n}$, respectively such that $p_{i} \geqslant 0, \sum_{i=1}^{n} P_{i}=1$. Mean of ${ }_{x}$, denoted by. [expected value of X denoted by $E(X)]$ is defined as

$$
\mu=E(X)=\sum_{i=1}^{n} x_{i} P_{i}
$$

and variance, denoted by σ^{2}, is defined as

$$
\begin{aligned}
& \sigma^{2}=\sum_{i-1}^{n}\left(x_{i}-\mu\right)^{2} p_{i}=\sum_{i=1}^{n} x_{i}^{2} p_{i}=\mu^{2} \text { or equivalently } \\
& \sigma^{2}=E(X-\mu)^{2}
\end{aligned}
$$

Standard deviation of the random variable ${ }_{x}$ is defined as

$$
=\sqrt{\text { variance }(X)}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p_{i}}
$$

13.1. 10 Bernoulli Trials

Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
(i) There should be a finite number of trials
(ii) The trials should be independent
(iii) Each trial has exactly two outcomes: success or failure
(iv) The probability of success (or failure) remains the same in each trial.

13.1. 11 Binomial Distribution

A random variable ${ }_{x}$ taking values $0,1,2, \ldots, n$ is said to have a binomial distribution with parameters and , if its probability distribution is given by

$$
\begin{aligned}
& P(X=r)={ }^{n} c_{r} p^{r} q^{n-r} \\
& \text { where } q=1-p \text { and } r=0,1,2, \ldots, n .
\end{aligned}
$$

