FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]
For solved question bank visit doorsteptutor.com
[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NEET (2024 Updated)-National Eligibility cum Entrance Test (Medical) Chemistry Coaching Programs
巳 Video Course 2024 (8 Lectures [4
Hrs : 33 Mins]): Offline Support
Click Here to View \& Get Complete
Material
[https://www.doorsteptutor.com/Exams
/NEET/Chemistry/Lectures/]

Rs. 100.00
1 Month Validity (Multiple Devices)

B (C) Online Tests (5 Tests [50

Questions Each]]: NTA Pattern, Analytics \& Explanations

Click Here to View \& Get Complete Material
[https://www.doorsteptutor.com/Exams /NEET/Chemistry/Online-Test-Series/]

Rs. 500.00
3 Year Validity (Multiple Devices)

NCERT Class 12- Mathematics: Chapter - 11 Three Dimensional Geometry Part 2

11.2 Solved Examples

Short Answer (S. A)

Question 1: If the direction ratios of a line are $1,1,2$, find the direction cosines of the line.

Answer:

The direction cosines are given by

$$
l=\begin{gathered}
a \\
\sqrt{ } a^{2}+b^{2}+c^{2}
\end{gathered}, m=\begin{gathered}
b \\
\sqrt{ } a^{2}+b^{2}+c^{2}
\end{gathered}, n=\begin{gathered}
c \\
\sqrt{ } a^{2}+b^{2}+c^{2}
\end{gathered}
$$

Here a, b, c are $1,1,2$, respectively.
Therefore, $l=\begin{gathered}1 \\ \sqrt{ } 1^{2}+1^{2}+2^{2}\end{gathered}, m=\begin{gathered}1 \\ \sqrt{ } 1^{2}+1^{2}+2^{2}\end{gathered}, n=\begin{gathered}2 \\ \sqrt{ } 1^{2}+1^{2}+2^{2}\end{gathered}$
i.e., $l=\begin{gathered}1 \\ \sqrt{ } 6\end{gathered}, m=\begin{aligned} & 1 \\ & \sqrt{ } 6\end{aligned}, n=\begin{gathered}2 \\ \sqrt{ } 6\end{gathered}$ i.e. $\pm\left(\begin{array}{ccc}1 & 1 & 2 \\ \sqrt{ } 6 & \sqrt{ } 6 & \\ & \sqrt{ } 6\end{array}\right)$ are D. C's of the line.

Question 2:

Find the direction cosines of the line passing through the points $P(2,3,5)$ and $Q(-1,2,4)$.

Answer:

The direction cosines of a line passing through the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ are

$$
\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
P Q & , & P Q \\
\hline Q Q
\end{array}
$$

Here $P Q=\sqrt{ }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}$

$$
=\sqrt{ }(-1-2)^{2}+(2-3)^{2}+(4-5)^{2}=\sqrt{ } 9+1+1=\sqrt{ } 11
$$

Hence D. C. s are

$$
\pm\left(\begin{array}{ccc}
-3 & -1 & -1 \\
\sqrt{ } 11 & \sqrt{ } 11 & \sqrt{ } 11
\end{array}\right) \text { or } \pm\left(\begin{array}{ccc}
3 & 1 & 1 \\
\sqrt{ } 11 & , & \sqrt{ } 11
\end{array}, \begin{array}{l}
\sqrt{ } 11
\end{array}\right)
$$

Question 3: If a line makes an angle of $30^{\circ}, 60^{\circ}, 90^{\circ}$ with the positive direction of x, y, z-axes , respectively, then find its direction cosines.

Answer:

The direction cosines of a line which makes an angle of α, β, γ with the axes, are $\cos \alpha, \cos \beta, \cos \gamma$
Therefore, D. C. s of the line are $\cos 30^{\circ}, \cos 60^{\circ}, \cos 90^{\circ}$ i.e.., $\pm\left(\begin{array}{cc}\sqrt{ } 3 & 1 \\ 2 & , \\ 2\end{array}, 0\right)$

Question 4:

The x - coordinate of a point on the line joining the points $Q(2,2,1)$ and $R(5,1,-2)$ is . Find its z - coordinate.

Answer:

Let the point P divide $Q R$ in the ratio $\lambda: 1$, then the co-ordinate of ${ }_{p}$ are

$$
\left(\begin{array}{ccc}
5 \lambda+2 & \lambda+2 & -2 \lambda+1 \\
\lambda+1, & \lambda+1, & \lambda+1
\end{array}\right)
$$

But ${ }_{x-}$ coordinate of P is . Therefore,

$$
\begin{gathered}
5 \lambda+2 \\
\lambda+1
\end{gathered}=4 \Rightarrow \lambda=2
$$

Hence, the ${ }_{z}$ - coordinate of, is $\begin{gathered}-2 \lambda+1 \\ \lambda+1\end{gathered}=-1$
Question 5: Find the distance of the point whose position vector is $(2 \hat{\imath}+\hat{\jmath}-\hat{k})$ from the plane $\vec{r} \cdot(\hat{\imath}-2 \hat{\jmath}+4 \hat{k})=9$

Answer:

Here $\vec{a}=2 \hat{\imath}+\hat{\jmath}-\hat{k}, \vec{n}=\hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ and $d=9$
So, the required distance is $|(2 \hat{\imath}+\hat{\jmath}-\hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+4 \hat{k})-9|$

$$
\sqrt{ } 1+4+16
$$

$$
=\begin{gathered}
|2-2-4-9| \\
\sqrt{ } 21
\end{gathered}=\begin{gathered}
13 \\
\sqrt{ } 21
\end{gathered}
$$

Question 6:

Find the distance of the point $(-2,4,-5)$ from the line $\begin{gathered}x+3 \\ 3\end{gathered}=\begin{gathered}y-4 \\ 5\end{gathered}=\begin{gathered}z+8 \\ 6\end{gathered}$

Answer:

Here $P(-2,4,-5)$ is the given point.
Any point ${ }_{\rho}$ on the line is given by ($3 \lambda-3,5 \lambda+4,(6 \lambda-8)$),

$$
\overrightarrow{P Q}=(3 \lambda-1) \hat{\imath}+5 \lambda \hat{\jmath}+(6 \lambda-3) \hat{k} .
$$

Since $\overrightarrow{P Q} \perp(3 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})$, we have

$$
\begin{aligned}
& 3(3 \lambda-1)+5(5 \lambda)+6(6 \lambda-3)=0 \\
& 9 \lambda+25 \lambda+36 \lambda=21, \text { i.e. } \lambda=\begin{array}{c}
3 \\
10
\end{array}
\end{aligned}
$$

Thus $\overrightarrow{P Q}=\begin{gathered}10 \hat{\imath}+\begin{array}{l}15 \\ 10\end{array} \hat{\jmath}-\frac{12}{10} \hat{k}\end{gathered}$
Hence $|\overrightarrow{P Q}|=\begin{gathered}1 \\ 10 \\ \\ \\ 1\end{gathered}+225+144=\sqrt{37} \begin{gathered}10\end{gathered}$.

