## FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

## NCERT Class 12- Mathematics: Chapter - 10 Vector Algebra Part 1

Get unlimited access to the best preparation resource for CBSE/Class-12 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-12/]- for all subjects of CBSE/Class-12.

### 10.1 Overview

10.1. 1 A quantity that has magnitude as well as direction is called a vector.
10.1. 2 The unit vector in the direction of $\vec{a}$ is given by $\frac{\vec{a}}{|\vec{a}|}$ and is represented ..
10.1. 3 Position vector of a point $P(x, y, z)$ is given as $\overrightarrow{O P}=x \hat{i}+y \hat{j}+z \hat{k}$ and its magnitude as $|\overrightarrow{O P}|=\sqrt{x^{2}+y^{2}+z^{2}}$, where ${ }_{\circ}$ is the origin.
10.1. 4 The scalar components of a vector are its direction ratios, and represent its projections along the respective axes.
10.1. 5 The magnitude r , direction ratios $(a, b, c)$ and direction cosines $(l, m, n)$ of any vector are related as:

$$
l=\frac{a}{r}, m=\frac{b}{r}, n=\frac{c}{r} .
$$

10.1. 6 The sum of the vectors representing the three sides of a triangle taken in order is $\vec{o}$
10.1. 7 The triangle law of vector addition states that "If two vectors are represented by two sides of a triangle taken in order, then their sum or resultant is given by the third side taken in opposite order" .

### 10.1. 8 Scalar multiplication

If $\vec{a}$ is a given vector and, a scalar, then $\lambda \vec{\imath}$ is a vector whose magnitude is $|\lambda \vec{a}|=|\lambda||\vec{a}|$. The direction of $\lambda \vec{a}$ is same as that of $\vec{a}$ if is positive and, opposite to that of $\vec{a}$ if is negative.

### 10.1. 9 Vector joining two points

If $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are any two points, then

$$
\begin{aligned}
& \overrightarrow{P_{1} P_{2}}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k} \\
& \overrightarrow{P_{1} P_{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

### 10.1. 10 Section formula

The position vector of a point R dividing the line segment joining the points P and Q whose position vectors are $\vec{a}$ and $\vec{b}$
(i) In the ratio $m: n$ internally, is given by $\left|\frac{n \vec{a}+m \vec{b}}{m+n}\right|$
(ii) in the ratio $m: n$ externally, is given by $\left|\frac{m \vec{b}-n \vec{a}}{m-n}\right|$
10.1. 11 Projection of $\vec{a}$ along $\vec{b}$ is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ and the Projection vector of $\vec{a}$ along $\vec{b}$ is $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \vec{b}$.

### 10.1. 12 Scalar or dot product

The scalar or dot product of two given vectors $\vec{a}$ and $\vec{a}$ having an angle $\theta$ between them is defined as

$$
\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta
$$

### 10.1. 13 Vector or cross product

The cross product of two vectors $\vec{a}$ and $\vec{b}$ having angle $\theta$ between them is given as $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \widehat{n}$,
where . is a unit vector perpendicular to the plane containing $\vec{a}$ and $\vec{b}$ and $\vec{a}, \vec{b}$, form a righthanded system?
10.1. 14 If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are two vectors and is any scalar, then

$$
\begin{aligned}
& \vec{a}+\vec{b}=\left(a_{1}+b_{1}\right) \hat{i}+\left(a_{2}+b_{2}\right) \hat{j}+\left(a_{3}+b_{3}\right) \hat{k} \\
& \lambda \vec{a}=\left(\lambda a_{1}\right) \hat{i}+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) \hat{k} \\
& \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=\left(b_{1} c_{2}-b_{2} c_{1}\right) \hat{i}+\left(a_{2} c_{1}-c_{1} c_{2}\right) \hat{j}+\left(a_{1} b_{b}-a_{2} b_{1}\right) \hat{k}
\end{aligned}
$$

Angle between two vectors $\vec{a}$ and $\vec{b}$ is given by

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}
$$

### 10.2 Solved Examples

## Short Answer (S. A)

## Question 1:

Find the unit vector in the direction of the sum of the vectors

$$
\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k} \text { and } \vec{b}=-\hat{i}+\hat{j}+3 \hat{k}
$$

## Answer:

Let $\vec{c}$ denote the sum of $\vec{a}$ and $\vec{b}$ We have

$$
\vec{c}=(2 \hat{i}-\hat{j}+2 \hat{k})+(-\hat{i}+\hat{j}+3 \hat{k})=-\hat{i}+5 \hat{k}
$$

Now $|\vec{c}|=\sqrt{1^{2}+5^{2}}=\sqrt{26}$.

Thus, the required unit vector is $\hat{c}=\frac{\vec{c}}{|\vec{c}|}=\frac{1}{\sqrt{26}}(\hat{i}+5 \hat{k})=\frac{1}{\sqrt{26}} \hat{i}+\frac{5}{\sqrt{26}} \hat{k}$

## Question 2:

Find a vector of magnitude 11 in the direction opposite to that of $\overrightarrow{P Q}$ where $P$ and $Q$ are the points $(1,3,2)$ and $(-1,0,8)$, respectively.

$$
\overrightarrow{Q P}=(-1-1) \hat{i}(0-3) \hat{j}+(8-2) \hat{k}=-2 \hat{i}-3 \hat{j}+6 \hat{k}
$$

Thus $\overrightarrow{Q P}=-\overrightarrow{P Q}=2 \hat{i}+3 \hat{j}-6 \hat{k}$

$$
\Rightarrow|\overrightarrow{Q P}|=\sqrt{2^{2}+3^{2}+(-6)^{2}}=\sqrt{4+9+36}=\sqrt{49}=7
$$

Therefore, unit vector in the direction of $\overrightarrow{Q P}$ is given by

$$
\widehat{Q P} \frac{\overrightarrow{Q P}}{|\overrightarrow{Q P}|}=\frac{2 \hat{i} 3 \hat{j} 6 \hat{k}}{7}
$$

Hence, the required vector of magnitude 11 in direction of $\overrightarrow{Q P}$ is

$$
11 \widehat{Q P}=11 \frac{2 \hat{i} 3 \widehat{j} 6 \hat{k}}{7}=\frac{22}{7} \hat{i}+\frac{33}{7} \hat{j}-\frac{66}{7} \widehat{k}
$$

