FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Chemistry Class - 11: Chapter - 2. Structure of Atom - Part-3

Get top class preparation for CBSE/Class-7 right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-7/]- for all subjects of CBSE/Class-7.

Multiple Choice Questions

Questions 11:

Total number of orbitals associated with third shell will be \qquad .
(i)
(ii)
(iii)
(iv)

Answer: (iii)

Solution:

Questions 12:

Orbital angular momentum depends on \qquad .
(i)
(ii) nand l
(iii) nand m
(iv) mands

Answer: (i)

Solution:

Questions 13:

Chlorine exists in two isotopic forms, $\mathrm{Cl}-37$ and $\mathrm{Cl}-35$ but its atomic mass is 35.5 . This indicates the ratio of $\mathrm{Cl}-37$ and $\mathrm{Cl}-35$ is approximately
(i) $1: 2$
(ii) $1: 1$
(iii) $1: 3$
(iv) $3: 1$

Answer: (iii)

Solution:

Questions 14:

The pair of ions having same electronic configuration is \qquad .
(i) $\mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}$
(ii) $\mathrm{Fe}^{3+}, \mathrm{Mn} 2+$
(iii) $\mathrm{Fe}^{3+}, \mathrm{CO}^{3+}$
(iv) $\mathrm{Sc}^{3+}, \mathrm{Cr}^{3+}$

Answer: (ii)

Solution:

Questions 15:

For the electrons of oxygen atom, which of the following statements is correct?
(i) $Z_{\text {eff }}$ for an electron in a ${ }_{2 s}$ orbital is the same as $Z_{\text {eff }}$ for an electron in a ${ }_{2 p}$ orbital.
(ii) An electron in the $2 s$ orbital has the same energy as an electron in the ${ }_{2 p}$ orbital.
(iii) $Z_{\text {eff }}$ for an electron in ${ }_{1 s}$ orbital is the same as $Z_{\text {eff }}$ for an electron in a $2 s$ orbital.
(iv) The two electrons present in the ${ }_{2 s}$ orbital have spin quantum numbers ${ }_{m s}$ but of opposite sign.

Answer: (iv)

Solution:

Questions 16:
If travelling at same speeds, which of the following matter waves have the shortest wavelength?
(i) Electron
(ii) Alpha particle ($\mathrm{He} 2+$)
(iii) Neutron
(iv) Proton

Answer: (ii)

Solution:

