FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com [https://www.doorsteptutor.com]</u> and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Mathematics: Perpendicular Line Formula, Solved Examples 1,2

Get top class preparation for competitive exams right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]- for all subjects of your exam.

Perpendicular Line Formula

A perpendicular line is a straight line through a point. It makes an angle of 90° with a particular point through which the line passes. Coordinates and line equation is the prerequisite to finding out the perpendicular line.

Consider the equation of the line is ax + by + c = 0 and coordinates are (x_1, y_1) , the slope should $be -\frac{a}{b}$. If one line is perpendicular to this line, the product of slope should be -1. Let m_1 and m_2 be the slopes of two lines, then if they are perpendicular to each other.

Solved Examples

Question 1: Check whether 2x + 3y + 5 = 0 and 3x - 2y + 1 = 0 are perpendicular or not?

Solution:

The given equations of lines are, 2x + 3y + 5 = 0 and 3x-2y+1 = 0

To check whether they are perpendicular to each other, find out the slopes of both lines. If the product of the slope is $_{-1}$, these lines are perpendicular to each other.

Slope equation is;
$$m = -\frac{a}{b}$$

Slope for first line,
$$m_1 = -\frac{a}{b} = -\frac{2}{3}$$

Slope for second line,
$$m_2 = -\frac{a}{b} = -\frac{3}{-2} = \frac{3}{2}$$

So,
$$m_1 \times m_2 = -\frac{2}{3} \times \frac{3}{2} = -1$$

Since the product of slope is -1, the given lines are perpendicular to each other.

Question 2: Check whether 3x + 5y + 6 = 0 and 5x - 6y + 2 = 0 are perpendicular or not?

Solution: The given equations of lines are, 3x + 5y + 6 = 0 and 3x - 2y + 1 = 0

To check whether they are perpendicular to each other, find out the slopes of both lines. If the product of the slope is $_{-1}$, these lines are perpendicular to each other.

Slope equation is;
$$m = -\frac{a}{b}$$

Slope for first line,
$$m_1 = -\frac{a}{b} = -\frac{3}{5}$$

Slope for second line,
$$m_2 = -\frac{a}{b} = -\frac{5}{-6} =$$

So,
$$m_1 \times m_2 = -\frac{3}{5} \times \frac{5}{6} = -\frac{1}{2}$$