FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Mathematics: Perpendicular Line Formula, Solved Examples 1,2

Get top class preparation for competitive exams right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]- for all subjects of your exam.

Perpendicular Line Formula

A perpendicular line is a straight line through a point. It makes an angle of 90° with a particular point through which the line passes. Coordinates and line equation is the prerequisite to finding out the perpendicular line.

Consider the equation of the line is $a x+b y+c=0$ and coordinates are $\left(x_{1}, y_{1}\right)$, the slope should be $-\frac{a}{b}$. If one line is perpendicular to this line, the product of slope should be -1 . Let ${ }_{m 1}$ and $m 2$ be the slopes of two lines, then if they are perpendicular to each other.

Solved Examples

Question 1: Check whether $2 x+3 y+5=0$ and $3 x-2 y+1=0$ are perpendicular or not?

Solution:

The given equations of lines are, $2 x+3 y+5=0$ and $3 x-2 y+1=0$
To check whether they are perpendicular to each other, find out the slopes of both lines. If the product of the slope is -1 , these lines are perpendicular to each other.

Slope equation is; $m=-\frac{a}{b}$
Slope for first line, $m_{1}=-\frac{a}{b}=-\frac{2}{3}$
Slope for second line, $m_{2}=-\frac{a}{b}=-\frac{3}{-2}=\frac{3}{2}$
So, $m_{1} \times m_{2}=-\frac{2}{3} \times \frac{3}{2}=-1$
Since the product of slope is ${ }_{-1}$, the given lines are perpendicular to each other.
Question 2: Check whether $3 x+5 y+6=0$ and $5 x-6 y+2=0$ are perpendicular or not?
Solution: The given equations of lines are, $3 x+5 y+6=0$ and $3 x-2 y+1=0$
To check whether they are perpendicular to each other, find out the slopes of both lines. If the product of the slope is -1 , these lines are perpendicular to each other.

Slope equation is; $m=-\frac{a}{b}$
Slope for first line, $m_{1}=-\frac{a}{b}=-\frac{3}{5}$
Slope for second line, $m_{2}=-\frac{a}{b}=-\frac{5}{-6}=$

So, $m_{1} \times m_{2}=-\frac{3}{5} \times \frac{5}{6}=-\frac{1}{2}$
Since the product of slope is not ${ }_{-1}$, the given lines are not perpendicular to each other.

