FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Inverse Trigonometric Functions: Properties of Inverse Part 1

Glide to success with Doorsteptutor material for competitive exams : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]- for all subjects of your exam.

What is Inverse Trigonometric Function?

Considering the Domain and Range of the Inverse Functions, Following Formulas Are Important to Be Noted:

$$
\begin{aligned}
& \sin \left(\sin ^{-1} x\right)=x, \text { if }-1 \leqslant x \leqslant 1 \\
& \cos \left(\cos ^{-1} x\right)=x, \text { if }-1 \leqslant x \leqslant 1 \\
& \tan \left(\tan ^{-1} x\right)=x, \text { if }-\infty \leqslant x \leqslant \infty \\
& \cos \left(\cos ^{-1} x\right)=x, \text { if }-\infty \leqslant x \leqslant \infty \\
& \cot \left(\cot ^{-1} x\right)=x, \text { if }-\infty \leqslant x \leqslant \infty \\
& \sec \left(\sec ^{-1} x\right)=x, \text { if }-\infty \leqslant x \leqslant-1 \text { or } 1 \leqslant x \leqslant \infty \\
& \operatorname{cosec}\left(\operatorname{cosec}^{-1} x\right)=x, \text { if }-\infty \leqslant x \leqslant-1 \text { or } 1 \leqslant x \leqslant \infty
\end{aligned}
$$

- The inverse trigonometric functions are an important aspect of trigonometric functions, included in the syllabus for class ${ }_{12}$ students.
- In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions.
- Inverses of trigonometric functions exist solely due to the restrictions existing on the domains and their respective ranges.
- Being able to solve inverse trigonometric function problems starts by understanding the trigonometric ratios first.
- Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios
- The behavior of these trigonometric functions is usually represented in the form of graphical methods.
- They play an essential role in calculus as they help to define different integrals.
- Major applications of inverse trigonometric functions in everyday life are in the fields of science and engineering.

Properties of Inverse Trigonometric Functions

- The properties of Inverse Trigonometric Functions help to prove a distinct relationship between the different trigonometric entities such as $\sin x, \cos x, \tan x, \operatorname{cosec} x, \sec x$, and $\cot x$.
- There are a few inverse trigonometric functions properties which are crucial to not only solve problems but also to have a deeper understanding of this concept.
- The domain of a function is defined as the set of every possible independent variable where the function exists. Inverse Trigonometric Functions are defined in a certain interval.
- The results obtained with the help of these properties are valid within the principal branches of the inverse trigonometric functions.
- To recall, inverse trigonometric functions are also called "Arc Functions." For a given value of a trigonometric function; they produce the length of arc needed to obtain that value.
- These properties are valid for some values of , where these inverse trigonometric functions are defined with.
- The range of an inverse function is defined as the range of values of the inverse function that can attain with the defined domain of the function.

Property Set 1

$$
\begin{aligned}
& \sin ^{-1}(x)=\operatorname{cosec} \\
& \cos ^{-1}\left(\frac{1}{x}\right), x \in[-1,1]-\{0\} \\
& \tan ^{-1}(x)=\sec ^{-1}\left(\frac{1}{x}\right), x \in[-1,1]-\{0\} \\
& \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right), \text { if } x>0 \text { (or) } \cot ^{-1}\left(\frac{1}{x}\right)-\pi, \text { if } x<0
\end{aligned}
$$

Property Set 2

$$
\begin{aligned}
& \sin ^{-1}(-x)=-\sin ^{-1}(x) \\
& \tan ^{-1}(-x)=-\tan ^{-1}(x) \\
& \cos ^{-1}(-x)=\pi-\cos ^{-1}(x) \\
& \sec ^{-1}(-x)=\pi-\sec ^{-1}(x) \\
& \cot ^{-1}(-x)=\pi-\cot ^{-1}(x)
\end{aligned}
$$

Derivatives of Inverse Trigonometric Functions

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin ^{-1} x\right) & =\frac{1}{\sqrt{1-x^{2}}}, x \neq \pm 1 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\cos ^{-1} x\right) & =\frac{-1}{\sqrt{1-x^{2}}}, x \neq \pm 1 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\tan ^{-1} x\right) & =\frac{1}{1+x^{2}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\cot ^{-1} x\right) & =\frac{1}{1+x^{2}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\sec ^{-1} x\right) & =\frac{1}{|x| \sqrt{x^{2}-1}}, x \neq \pm 1,0
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\csc ^{-1} x\right)=\frac{-1}{|x| \sqrt{x^{2}-1}}, x \neq \pm 1,0
$$

