FlexiPrep

Cyclic Quadrilateral: Cyclic Quadrilateral Theorem and Properties of Cyclic Quadrilateral Theorem (For CBSE, ICSE, IAS, NET, NRA 2022)

Get unlimited access to the best preparation resource for competitive exams : **get questions**, **notes**, **tests**, **video lectures and more**- for all subjects of your exam.

A quadrilateral is a 4-sided polygon bounded by 4 finite line segments. The word 'quadrilateral' is composed of two Latin words, *Quadric* meaning 'four' and *latus* meaning 'side'. It is a two-dimensional figure having four sides (or edges) and four vertices. A circle is the locus of all points in a plane which are equidistant from a fixed point. If all the four vertices of a quadrilateral ABCD lie on the circumference of the circle, then ABCD is a cyclic quadrilateral. In other words, if any four points on the circumference of a circle are joined, they form vertices of a **cyclic quadrilateral**. It can be visualized as a quadrilateral which is inscribed in a circle, i.e., all four vertices of the quadrilateral lie on the circumference of the circle.

What is a Cyclic Quadrilateral?

In the figure given below, the quadrilateral ABCD is cyclic.

©FlexiPrep. Report ©violations @https://tips.fbi.gov/

Let us do an activity. Take a circle and choose any 4 points on the circumference of the circle. Join these points to form a quadrilateral. Now measure the angles formed at the vertices of the cyclic quadrilateral. The sum of the angles formed at the vertices is always 360° and the sum of angles formed at the opposite vertices is always supplementary. This property can be stated as a theorem as:

Cyclic Quadrilateral Theorem

Theorem 1: In a cyclic quadrilateral, the sum of either pair of opposite angles is supplementary.

Proof: Let us now try to prove this theorem.

Given: A cyclic quadrilateral ABCD inscribed in a circle with center O. Construction: Join the vertices A and C with center O.

©FlexiPrep. Report ©violations @https://tips.fbi.gov/

The converse of this theorem is also true which states that if opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.

S. NO	Statement	Reason

1.	$\angle ADC = 2\angle ABC = 2\alpha$	Theorem: Angle subtended by same arc is half of the angle subtended at the center.
2.	Reflex $\angle ADC = 2\angle ADC = 2\beta$	Theorem: Angle subtended by same arc is half of the angle subtended at the center.
3.	$\angle ADC + reflex \angle ADC = 360^{\circ}$ $2\angle ABC + 2\angle ADC = 360^{\circ}$ $2\alpha + 2\beta = 360^{\circ}$ $\alpha + \beta = 180^{\circ}$	Using statement 1 and 2.

The Converse of this Theorem is Also True Which States That if Opposite Angles of a Quadrilateral Are

Supplementary then the Quadrilateral is Cyclic

Theorem 2: The ratio between the diagonals and the sides can be defined and is known as Cyclic quadrilateral theorem. If there's a quadrilateral which is inscribed in a circle, then the product of the diagonals is equal to the sum of the product of its two pairs of opposite sides.

If PQRS is a cyclic quadrilateral, PQ and ₹, and QR and PS are opposite sides. PR and QS are the diagonals.

$$(PQ \times \vec{z}) + (QR \times PS) = PR \times QS$$

©FlexiPrep. Report ©violations @https://tips.fbi.gov/

Properties of Cyclic Quadrilateral

In a cyclic quadrilateral, the sum of a pair of opposite angles is 180° (supplementary)

If the sum of two opposite angles are supplementary, then it's a cyclic quadrilateral

The area of a cyclic quadrilateral is [s(s-a)(s-b)(s-c)(s-c)] 0.5 where a, b, c, and d, are the four sides of the quadrilateral and the perimeter is 2s

The four vertices of a cyclic quadrilateral lie on the circumference of the circle

To get a rectangle or a parallelogram, just join the midpoints of the four sides in order

If PQRS is a cyclic quadrilateral, then

$$\angle$$
SPR = \angle SQR, \angle QPR = \angle QSR, \angle PQS = \angle PRS, \angle QRP = \angle QSP.

If T is the point of intersection of the two diagonals, $PT \times TR = QT \times TS$

The exterior angle formed if any one side of the cyclic quadrilateral is produced is equal to the interior angle opposite to it

In a given cyclic quadrilateral, $d_1/d_2 = \text{sum of the product of opposite sides}$, which shares the diagonals endpoints

If it is cyclic quadrilateral, then the perpendicular bisectors will be concurrent compulsorily

In a cyclic quadrilateral, the four perpendicular bisectors of the given four sides meet at the center O

Properties of Cyclic Quadrilateral

Cyclic Quadrilateral Examples

Question: Find the value of angle D of a cyclic quadrilateral, if angle B is 70°.

Solution:

As ABCD is a cyclic quadrilateral, so the sum of a pair of two opposite angles will be 180°.

$$\angle B + \angle D = 180^{\circ}$$

$$70^{\circ} + \angle D = 180^{\circ}$$

$$\angle D = 180^{\circ} - 70^{\circ}$$

$$\angle D = 110^{\circ}$$

The value of angle D is 110° .

Question: Find the value of $\angle D$ of a cyclic quadrilateral, if $\angle B$ is 50°.

Solution:

As ABCD is a cyclic quadrilateral, so the sum of a pair of two opposite angles will be 180°.

$$\angle B + \angle D = 180^{\circ}$$

Put the value of $\angle B$

$$50^{\circ} + \angle D = 180^{\circ}$$

 80° take the opposite side.

$$\angle D = 180^{\circ} - 50^{\circ}$$

$$\angle D = 130^{\circ}$$

The value of angle D is 130° .

Developed by: Mindsprite Solutions