FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit $\underline{\text{doorsteptutor.com [https://www.doorsteptutor.com]}}$ and for free video lectures visit $\underline{\text{Examrace}}$ YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 11 Mathematics Solutions: Chapter 9 – Sequences and Series Miscellaneous Exercise 9 Part 1

Glide to success with Doorsteptutor material for CBSE/Class-7 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-7/]- for all subjects of CBSE/Class-7.

Arithmetic Series

An arithmetic series is the sum of an arithmetic sequence.

Formulas for Arithmetic Series:

$$S_n = \frac{n}{2} \left(a_1 + a_n \right)$$

$$S_n = \frac{n}{2} \left[2a_1 + (n-1)d \right]$$

where

 a_1 is the first term

 a_n is the nth term

n is the number of terms

d is the common difference

1. Show that the sum of $(m+n)^{th}$ and $(m-n)^{th}$ terms of an A. P. is equal to twice the m^{th} term.

Answer:

Consider *a*and*d* be the first term and the common difference of the A. P. respectively.

It is known that the kth term of an A. P. is given by

$$a^{k} = a + (k-1) d$$

$$\therefore a_{m+n} = a + (m+n-1) d$$

$$a_{m-n} = a + (m - n - 1) d$$

$$a_m = a + (m-1) d$$

$$\therefore a_{m+n} + a_{m-n} = a + (m+n-1)d + a + (m-n-1)d$$

$$= 2a + (m + n - 1 + m - n - 1) d$$

$$= 2a + (2m - 2) d$$

$$=2a+2(m-1)d$$

$$= 2\left[a + \left(m - 1\right)d\right]$$

 $=2a_m$

So, the sum of $(m+n)^{th}$ and $(m-n)^{th}$ terms of an A. P. is equal to twice the m^{th} term.

2. If the sum of three numbers in A. P., is $_{24}$ and their product is $_{440}$, find the numbers.

Answer:

Consider the three numbers in A. P. be a - d, a, and a + d.

According to the given information,

$$(a-d) + (a) + (a+d) = 24 \dots (1)$$

$$\rightarrow 3a = 24$$

$$(a-d) a (a+d) = 440 \dots (2)$$

$$\therefore (8 - d)(8)(8 + d) = 440$$

$$\therefore (8-d)(8+d) = 55$$

$$\therefore 64 - d^2 = 55$$

$$\therefore d^2 = 64 - 55 = 9$$

$$\therefore d = \pm 3$$

So, when d = 3, the numbers are 5, 8, and 11 and when d = -3,

The numbers are 11,8, and5.

So, the three numbers are 5, 8, and 11.