FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]
For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace
YouTube Channel [https://youtube.com/c/Examrace/]
NCERT Class 11 Mathematics Solutions: Chapter 9 - Sequences and Series Miscellaneous Exercise 9 Part 1

Glide to success with Doorsteptutor material for CBSE/Class-7 : get questions, notes, tests, video lectures and more
[https://www.doorsteptutor.com/Exams/CBSE/Class-7/]- for all subjects of CBSE/Class-7.

Arithmetic Series

An arithmetic series is the sum of an arithmetic sequence. Formulas for Arithmetic Series:

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& \text { where } \\
& a_{1} \text { is the first term } \\
& a_{n} \text { is the } \mathrm{n}^{\text {th }} \text { term } \\
& n \text { is the number of terms } \\
& d \text { is the common difference }
\end{aligned}
$$

1. Show that the sum of $(m+n)^{t h} \operatorname{and}(m-n)^{t h}$ terms of an A. P. is equal to twice the $m^{t h}$ term.

Answer:
Consider a and d be the first term and the common difference of the A. P. respectively.
It is known that the kth term of an A. P. is given by

$$
\begin{aligned}
& a^{k}=a+(k-1) d \\
& \therefore a_{m+n}=a+(m+n-1) d \\
& a_{m-n}=a+(m-n-1) d \\
& a_{m}=a+(m-1) d \\
& \therefore a_{m+n}+a_{m-n}=a+(m+n-1) d+a+(m-n-1) d \\
& =2 a+(m+n-1+m-n-1) d \\
& =2 a+(2 m-2) d \\
& =2 a+2(m-1) d \\
& =2[a+(m-1) d] \\
& =2 a_{m}
\end{aligned}
$$

So, the sum of $(m+n)^{t h} \operatorname{and}(m-n)^{t h}$ terms of an A. P. is equal to twice the $m^{t h}$ term.
2. If the sum of three numbers in A. P. , is ${ }_{24}$ and their product is 440 , find the numbers.

Answer:
Consider the three numbers in A. P. be $a-d, a$, and $a+d$.

According to the given information,

$$
\begin{aligned}
& (a-d)+(a)+(a+d)=24 \ldots(\\
& \rightarrow 3 a=24 \\
& \therefore a=8 \\
& (a-d) a(a+d)=440 \ldots(2) \\
& \therefore(8-d)(8)(8+d)=440 \\
& \therefore(8-d)(8+d)=55 \\
& \therefore 64-d^{2}=55 \\
& \therefore d^{2}=64-55=9 \\
& \therefore d= \pm 3
\end{aligned}
$$

So, when $d=3$, the numbers are 5,8 , and11 and when $d=-3$,
The numbers are 11,8 , and5.
So, the three numbers are 5,8 , and11.

