FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 11 Mathematics Solutions: Chapter 8 - Binomial Theorem Miscellaneous Exercise Part 1

Glide to success with Doorsteptutor material for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Proof of Binomial Theorem

- Binomial theorem for any positive integer n,

$$
(a+b)^{n}={ }^{n} c_{0} a^{n}+{ }^{n} c_{1} a^{n-1} b+{ }^{n} c_{2} a^{n-2} b^{2}+\ldots \ldots . .+^{n} c_{n} b^{n}
$$

Proof

The proof is obtained by applying principle of mathematical induction.
Step: 1 Let the given statement be

$$
f(n):(a+b)^{\mathrm{r}}={ }^{n} c_{0} a^{n}+{ }^{n} c_{1} a^{n-1} b+{ }^{n} c_{2} a^{n-2} b^{2}+\ldots \ldots .+^{n} c_{n} b^{n}
$$

Check the result for $\boldsymbol{n}=\boldsymbol{1}$ we have
$f(1):(a+b)^{1}=^{1} c_{0} a^{1}+{ }^{1} c_{1} a^{1-1} b^{1}=a+b$
Thus Result is true for $\boldsymbol{n}=\boldsymbol{1}$
Step: 2 Let us assume that result is true for $\boldsymbol{n}=\boldsymbol{k}$
$f(k):(a+b)^{k}={ }^{k} c_{0} a^{k}+{ }^{k} c_{1} a^{k-1} b+^{k} c_{2} a^{k-2} b^{2}+\ldots \ldots .+^{k} c_{k} b^{k}$

1. Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729 , 7290and30375, respectively.

Answer:
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

The first three terms of the expansion are given as 729,7290 , and30375 respectively
So,

$$
T_{1}={ }^{n} C_{0} a^{n-0} b^{0}=a^{n}=729 \ldots \text { eq (1) }
$$

$$
\begin{align*}
& T_{2}={ }^{n} C_{1} a^{n-1} b^{1}=n a^{n-1} b=7290 \ldots \text { eq (2) } \tag{2}\\
& T_{3}={ }^{n} C_{2} a^{n-2} b^{2}=\frac{n(n-1)}{2} a^{n-2} b^{2}=30375 \tag{3}
\end{align*}
$$

Dividing eq (2) by (1)

$$
\frac{n a^{n-1} b}{a^{n}}=\frac{7290}{729}
$$

$$
\Rightarrow \frac{n b}{a}=10 \ldots \text { eq }
$$

Dividing eq (3) by (2)

$$
\begin{aligned}
& \therefore \frac{n(n-1) a^{n-2} b^{2}}{2 n a^{n-1} b}=\frac{30375}{7290} \\
& \Rightarrow \frac{(n-1) b}{2 a}=\frac{30375}{7290} \\
& \Rightarrow \frac{(n-1) b}{a}=\frac{30375 \times 2}{7290}=\frac{25}{3} \\
& \Rightarrow \frac{n b}{a}-\frac{b}{a}=\frac{25}{3} \\
\Rightarrow 10 & -\frac{b}{a}=\frac{25}{3}[U \operatorname{sing}(4)] \\
\Rightarrow \frac{b}{a} & =10-\frac{25}{3}=\frac{5}{3} \ldots \text { eq (5) }
\end{aligned}
$$

From eq (4) and (5)

$$
\begin{aligned}
& n \cdot \frac{5}{3}=10 \\
& \Rightarrow n=6
\end{aligned}
$$

Substituting $n=6$ in eq (1)

$$
\begin{aligned}
& a^{6}=729 \\
& \Rightarrow a=\sqrt[6]{729}=3
\end{aligned}
$$

From eq (5)

$$
\begin{aligned}
& \frac{b}{3}=\frac{5}{3} \\
& \Rightarrow b=5
\end{aligned}
$$

So, $a=3, b=5$ and $n=6$.

