FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 11 Mathematics Solutions: Chapter 5 - Complex Number and Quadratic Equations Miscellaneous Exercise Part 1

Doorsteptutor material for CBSE/Class-6 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-6/]- for all subjects of CBSE/Class-6.

1. Evaluate $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Answer:

$$
\begin{aligned}
& {\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}=\left[i^{4 \times 4+2}+\frac{1}{i^{4 \times 6+1}}\right]^{3}} \\
& =\left[\left(i^{4}\right)^{4} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3} \\
& =\left[i^{2}+\frac{1}{i}\right]^{3}\left[\because i^{4}=1\right] \\
& =\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3}\left[\because i^{2}=-1\right] \\
& =\left[-1+\frac{i}{i^{2}}\right]^{3} \\
& =[-1-i]^{3} \\
& =(-1)^{3}[1+i]^{3} \\
& =-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right] \\
& =-\left[1+i^{3}+3 i+3 i^{2}\right] \\
& =-[1-i+3 i-3] \\
& =-[-2+2 i] \\
& =2-2 i
\end{aligned}
$$

2. For any two complex numbers z_{1} and z_{2}, prove that $\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}$ Answer:

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$
$\therefore z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)$
$=x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right)$
$=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2}$
$=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2}\left[i^{2}=-1\right]$
$=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right)$
$\rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2}$
$\rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}$
So, proved.

