FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 11 Mathematics Solutions: Chapter 2 - Relations and Functions Miscellaneous Exercise Part 1

Get unlimited access to the best preparation resource for CBSE/Class-6 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-6/]- for all subjects of CBSE/Class-6.

1. The relation, is defined by $f(x)=\left\{\begin{array}{c}x^{2}, 0 \leqslant x \leqslant 3 \\ 3 x, 3 \leqslant x \leqslant 10\end{array}\right\}$

The relation is defined by $g(x)=\left\{\begin{array}{c}x^{2}, 0 \leqslant x \leqslant 2 \\ 3 x, 2 \leqslant x \leqslant 10\end{array}\right\}$
Show that f is a function and g is not a function.
Answer:
The relation , is defined as

$$
f(x)=\left\{\begin{array}{c}
x^{2}, 0 \leqslant x \leqslant 3 \\
3 x, 3 \leqslant x \leqslant 10
\end{array}\right\}
$$

It is observed that for

$$
\begin{aligned}
& \qquad 0 \leqslant x<3, f(x)=x^{2} \\
& 3<x \leqslant 10, f(x)=3 x \\
& \text { Also, at } x=3, f(x)=32=9 \text { or } f(x)=3 \times 3=9 \\
& \text { i.e.. , at } x=3, f(x)=9
\end{aligned}
$$

Therefore, for $0 \leqslant x \leqslant 10$, the images of $f(x)$ are unique.

Thus, the given relation is a function.
The relation g is defined as

$$
g(x)=\left\{\begin{array}{c}
x^{2}, 0 \leq x \leq 2 \\
3 x, 2 \leq x \leq 10
\end{array}\right\}
$$

It can be observed that for $x=2, g(x)=2^{2}=4$ and also $g(x)=3 \times 2=6$
Hence, element of the domain of the relation corresponds to two different images i.e.. , 4 and 6 .
Hence, this relation is not a function.
2. If $f(x)=x^{2}$, find $\frac{f(1.1)-f(1)}{1.1-1}$

Answer:

$$
\begin{aligned}
& f(x)=x^{2} \\
& \therefore \frac{f(1.1)-f(1)}{1.1-1}=\frac{(1.1)^{2}-(1)^{2}}{(1.1-1)} \\
& =\frac{1.21-1}{0.1} \\
& =\frac{0.21}{0.1} \\
& =2.1
\end{aligned}
$$

3. Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$

Answer:
The function is,

$$
\begin{aligned}
& f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12} \\
& =\frac{x^{2}+2 x+1}{(x-6)(x-2)}
\end{aligned}
$$

It can be seen that function, is defined for all real numbers except at $x=6$ and $x=2$.
So, the domain of is $R-\{2,6\}$.

