FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NCERT Class 11 Mathematics Solutions: Chapter 13 - Limits and Derivatives Miscellaneous Exercise Part 9

Doorsteptutor material for CBSE/Class-9 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Basic Differentiation Rules for Elementary Functions

1. $\frac{d}{d x}[c u]=c u^{\prime}$
2. $\frac{d}{d x}[u \pm v]=u^{\prime} \pm v^{\prime}$
3. $\frac{d}{d x}[u v]=$
4. $\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
5. $\frac{d}{d x}[c]=0$
6. $\frac{d}{d x}\left[u^{n}\right]=$
7. $\frac{d}{d x}[x]=1$
8. $\frac{d}{d x}[|u|]=\frac{u}{|u|}\left(u^{\prime}\right), \quad u \neq 0$
9. $\frac{d}{d x}[\ln u]$
10. $\frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime}$
11. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}$
12. $\frac{d}{d x}\left[a^{u}\right]=$
13. $\frac{d}{d x}[\sin u]=(\cos u) u^{\prime}$
14. $\frac{d}{d x}[\cos u]=-(\sin u) u^{\prime}$
15. $\frac{d}{d x}[\tan u]$
16. $\frac{d}{d x}[\cot u]=-\left(\csc ^{2} u\right) u^{\prime}$
17. $\frac{d}{d x}[\sec u]=(\sec u \tan u) u^{\prime}$
18. $\frac{d}{d x}[\csc u$.
19. $\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$
20. $\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}$
21. $\frac{d}{d x}[\operatorname{arctar}$
22. $\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}$
23. $\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
24. $\frac{d}{d x}[\operatorname{arccs}$
25. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r ands are fixed non-zero constants and mand n are integers) : $\frac{\sec x-1}{\sec x+1}$

$$
\begin{aligned}
& f(x)=\frac{\sec x-1}{\sec x+1} \\
& f(x)=\frac{\frac{1}{\cos x}-1}{\frac{1}{\cos x}+1} \\
& =\frac{1-\cos x}{1+\cos x}
\end{aligned}
$$

By quotient rule,

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(1+\cos x) \frac{d}{d x}(\sin x)-(1-\cos x) \frac{\mathrm{d}}{\mathrm{~d} x}(-\sin x)}{(1+\cos x)^{2}} \\
& =\frac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x}{\left(1+\frac{1}{\sec x}\right)^{2}} \\
& =\frac{2 \sin x}{\frac{(\sec x+1)^{2}}{\sec 2}} \\
& =\frac{2 \sin x \sec { }^{2} x}{(\sec x+1)^{2}} \\
& =\frac{\frac{2 \sin x}{\cos x} \sec x}{(\sec x+1)^{2}} \\
& =\frac{2 \sec x \tan x}{(\sec x+1)^{2}}
\end{aligned}
$$

2. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r ands are fixed non-zero constants and mand n are integers) : $\sin ^{n} x$

Answer:

$$
y=\sin ^{n} x
$$

Accordingly, $n=1, y=\sin x$

$$
\begin{gathered}
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\cos x \text {, i.e., } \frac{\mathrm{d}}{\mathrm{~d} x} \sin x=\cos x \\
n=2, y=\sin ^{2} x \\
\therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}(\sin x \sin x) \\
=(\sin x)^{\prime} \sin x+\sin x(\sin x)^{\prime} \quad \text { [By Leibnitz product rule] } \\
=\cos x \sin x+\sin x \cos x
\end{gathered}
$$

$$
=2 \sin x \cos x \ldots \text { eq (1) }
$$

$$
n=3, y=\sin ^{3} x
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin x \sin ^{2} x\right)
$$

$$
=(\sin x)^{\prime} \sin ^{2} x+\sin x\left(\sin ^{2} x\right)^{\prime} \quad[\text { By Leibnitz product rule }]
$$

$$
=\cos x \sin ^{2} x+\sin x(2 \sin x \cos x)[\text { Using (1)] }
$$

$$
=\cos x \sin ^{2} x+2 \sin ^{2} x \cos x
$$

$$
=3 \sin ^{2} x \cos x
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x
$$

Consider $n=k$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x \ldots$ eq (2)
Consider,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin ^{k+1} x\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin x \sin ^{k} x\right) \\
& =(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =(\sin x)^{\prime} \sin ^{k} x+\sin x\left(k \sin ^{(k-1)} x \cos x\right. \\
& =\cos x \sin ^{k} x+k \sin ^{k} x \cos x \\
& =(k+1) \sin ^{k} x \cos x
\end{aligned}
$$

So, our assertion is true for $n=k+1$.
So, by mathematical induction, $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$

