FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

 $\label{lem:com_com_com_com_com} For solved question bank visit $\underline{$ and for free video lectures visit $\underline{Examrace YouTube}$} $$ Channel [https://youtube.com/c/Examrace/] $$$

NCERT Class 11 Mathematics Solutions: Chapter 13 – Limits and Derivatives Miscellaneous Exercise Part 10

Doorsteptutor material for CBSE/Class-8 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-8/]- for all subjects of CBSE/Class-8.

Basic Differentiation Rules for Elementary Functions

1.
$$\frac{d}{dx}[cu] = cu'$$

$$2. \frac{d}{dx}[u \pm v] = u' \pm v'$$

3.
$$\frac{d}{dx}[uv] =$$

$$4. \frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$$

$$5. \ \frac{d}{dx}[c] = 0$$

$$6. \frac{d}{dx}[u^n] =$$

$$7. \ \frac{d}{dx}[x] = 1$$

8.
$$\frac{d}{dx}[|u|] = \frac{u}{|u|}(u'), \quad u \neq 0$$

9.
$$\frac{d}{dx}[\ln u]$$

$$10. \ \frac{d}{dx}[e^u] = e^u u'$$

11.
$$\frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$$

12.
$$\frac{d}{dx}[a^u] =$$

13.
$$\frac{d}{dx}[\sin u] = (\cos u)u'$$

$$14. \frac{d}{dx}[\cos u] = -(\sin u)u'$$

15.
$$\frac{d}{dx}[\tan u]$$

$$16. \frac{d}{dx}[\cot u] = -(\csc^2 u)u'$$

17.
$$\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$$

18.
$$\frac{d}{dx}[\csc u]$$

19.
$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}}$$

$$20. \ \frac{d}{dx}[\arccos u] = \frac{-u'}{\sqrt{1-u^2}}$$

21.
$$\frac{d}{dx}$$
[arctar

22.
$$\frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1+u^2}$$

23.
$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

24.
$$\frac{d}{dx}$$
[arccs

1. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and s are integers): $\frac{a+b\sin x}{c+d\cos x}$

Answer:

$$f(x) = \frac{a + b\sin x}{c + d\cos x}$$

By quotient rule,

$$f'(x) = \frac{(c + d\cos x)\frac{d}{dx}(a + b\sin x) - (a + b\sin x)\frac{d}{dx}(c + d\cos x)}{(c + d\cos x)^2}$$

$$= \frac{(c + d\cos x)(b\cos x) - (a + b\sin x)(-d\sin x)}{(c + d\cos x)^2}$$

$$= \frac{cb\cos x + bd\cos^2 x + ad\sin x + bd\sin^2 x}{(c + d\cos x)^2}$$

$$= \frac{bc\cos x + ad\sin x + bd(\cos^2 x + \sin^2 x)}{(c + d\cos x)^2}$$

$$= \frac{bc\cos x + ad\sin x + bd}{(c + d\cos x)^2}$$

2. Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and s are integers): $\frac{\sin(x+a)}{\cos x}$

Answer:

$$f(x) = \frac{\sin(x+a)}{\cos x}$$

By auotient rule.

$$f'(x) = \frac{\cos x \frac{d}{dx} [\sin(x+a)] - \sin(x+a) \frac{d}{dx} \cos x}{\cos^2 x}$$
$$f'(x) = \frac{\cos x \frac{d}{dx} [\sin(x+a)] - \sin(x+a) (-\sin x)}{\cos^2 x} \dots \text{ eq (1)}$$

$$g(x) = \sin(x + a)$$

Accordingly

$$g(x+h) = \sin(x+h+a)$$

By principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} [\sin(x+h+a) - \sin(x+a)]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{x+h+a+x+a}{2}\right) \sin\left(\frac{x+h+a-x-a}{2}\right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{2x+2a+h}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$= \lim_{h \to 0} \left[\cos\left(\frac{2x+2a+h}{2}\right) \left\{ \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\} \right]$$

$$= \lim_{h \to 0} \cos\left(\frac{2x+2a+h}{2}\right) \cdot \lim_{h \to 0} \left\{ \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\} \left[\text{As } h \to 0 \Rightarrow \frac{h}{2} \to 0 \right]$$

$$= \left(\cos\frac{2x+2a}{2} \right) \times 1 \left[\lim_{h \to 0} \frac{\sin h}{h} = 1 \right]$$

$$= \cos(x+a) \dots \text{ eq } (2)$$

From eq (1) and (2),

$$f'(x) = \frac{\cos x \cos(x+a) + \sin x \sin(x+a)}{\cos^2 x}$$
$$= \frac{\cos(x+a-x)}{\cos^2 x}$$
$$= \frac{\cos a}{\cos^2 x}$$