FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit <u>doorsteptutor.com</u> [https://www.doorsteptutor.com] and for free video lectures visit <u>Examrace YouTube Channel</u> [https://youtube.com/c/Examrace/]

NCERT Class 11 Mathematics Solutions: Chapter 1 – Sets Miscellaneous Exercise Part 5

Get unlimited access to the best preparation resource for CBSE/Class-9: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

Set operations: Intersection

• Formal definition for the intersection of two sets:

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

- Examples
 - $\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$
 - $\{a, b\} \cap \{3, 4\} = \emptyset$
 - $\{1,2\} \cap \emptyset = \emptyset$
- Properties of the intersection operation

• $A \cap U = A$

Identity law • $A \cap \emptyset = \emptyset$

 \bullet $A \cap A = A$

Domination law Idempotent law

Commutative law

 \bullet A \cap B = B \cap A • $A \cap (B \cap C) = (A \cap B) \cap C$

Associative law

1. Show that $A \cap B = A \cap C$ need not imply B = C.

Answer:

Consider, $A = \{0, 1\}, B = \{0, 2, 3\} \text{ and } C = \{0, 4, 5\}$

Accordingly, $A \cap B = \{0\}$ and $A \cap C = \{0\}$

Here, $A \cap B = A \cap C = \{0\}$

However, $B \neq C$ [$2 \in B$ and $2 \notin C$]

2. Let A and B be sets. If $A \cap X = B \cap X = \psi$ and $A \cup X = B \cup X$ for some set X,

show that A = B.

(Hints $A = A \cap (A \cup X)$, $B = B \cap (B \cup X)$ and use distributive law)

Answer:

Consider A and B be two sets such that $A \cap X = B \cap X = f$ and $A \cup X = B \cup X$ for

some set x to show A = B.

It can be seen that

$$A = A \cap (A \cup X) = A \cap (B \cup X) [:: A \cup X = B \cup X]$$

 $= (A \cap B) \cup (A \cap X)$ [Distributive law]

$$= (A \cap B) \cup \psi [:: A \cap X = \psi]$$

$$= A \cap B \dots eq (1)$$

Now, $B = B \cap (B \cup X)$

$$=B\cap (A\cup X)$$
 [:: $A\cup X=B\cup X$]

$$= (B \cap A) \cup (B \cap X)$$
 [Distributive law]

$$= (B \cap A) \cup \psi [:: B \cap X = \psi]$$

 $= B \cap A$

$$= A \cap B \dots eq (2)$$

Hence, from (1) and (2), we obtain A = B.

2. Find sets A, B and C such that $A \cap B$, $B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C = \psi$.

Answer:

Consider
$$A = \{0, 1\}, B = \{1, 2\}, \text{ and } C = \{2, 0\}$$
.

Accordingly, $A \cap B = \{1\}, B \cap C = \{2\}, \text{ and } A \cap C = \{0\}.$

 $\therefore A \cap B, B \cap C, \text{ and } A \cap C$ are non-empty.

However, $A \cap B \cap C = \psi$

3. In a survey of $_{600}$ students in a school, $_{150}$ students were found to be taking tea and $_{225}$ taking coffee, $_{100}$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee.

Answer:

Consider _v be the set of all students who took part in the survey.

Consider , be the set of students taking tea.

Consider _c be the set of students taking coffee.

Accordingly,
$$n(U) = 600, n(T) = 150, n(C) = 225, n(T \cap C) = 100$$

To find: Number of student taking neither tea nor coffee i.e.,

We have to find $n(T' \cap C')$.

$$n(T' \cap C') = n(T \cup C)'$$

$$= n(U) - n(T \cup C)$$

$$= n(U) - [n(T) + n(C) - n(T \cap C)]$$

$$= 600 - [150 + 225 - 100]$$

$$= 600 - 275$$

$$= 325$$

Hence, $_{325}$ students were taking neither tea nor coffee.