## FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

## NCERT Class 11 Mathematics Solutions: Chapter 1 - Sets Miscellaneous Exercise Part 5

Get unlimited access to the best preparation resource for CBSE/Class-9 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-9/]- for all subjects of CBSE/Class-9.

## Set operations: Intersection

- Formal definition for the intersection of two sets: $\mathrm{A} \cap \mathrm{B}=\{x \mid x \in \mathrm{~A}$ and $x \in \mathrm{~B}\}$
- Examples
- $\{1,2,3\} \cap\{3,4,5\}=\{3\}$
- $\{\mathrm{a}, \mathrm{b}\} \cap\{3,4\}=\varnothing$
- $\{1,2\} \cap \varnothing=\varnothing$
- Properties of the intersection operation
- $\mathrm{A} \cap \mathrm{U}=\mathrm{A}$
- $\mathrm{A} \cap \varnothing=\varnothing$
- $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
- $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
- $A \cap(B \cap C)=(A \cap B) \cap C$

Identity law
Domination law
Idempotent law
Commutative law
Associative law

1. Show that $A \cap B=A \cap C$ need not imply $B=C$.

Answer:
Consider, $A=\{0,1\}, B=\{0,2,3\}$ and $C=\{0,4,5\}$
Accordingly, $A \cap B=\{0\}$ and $A \cap C=\{0\}$

Here, $A \cap B=A \cap C=\{0\}$
However, $B \neq C[2 \in B$ and $2 \notin C]$
2. Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\psi$ and $A \cup X=B \cup X$ for some set ${ }_{x}$,
show that $A=B$.
(Hints $A=A \cap(A \cup X), B=B \cap(B \cup X)$ and use distributive law)
Answer:

Consider $A$ and $B$ be two sets such that $A \cap X=B \cap X=f$ and $A \cup X=B \cup X$ for some set ${ }_{x}$ to show $A=B$.

It can be seen that

$$
\begin{align*}
& \quad A=A \cap(A \cup X)=A \cap(B \cup X)[\because A \cup X=B \cup X] \\
& =(A \cap B) \cup(A \cap X) \text { [Distributive law }] \\
& =(A \cap B) \cup \psi[\because A \cap X=\psi] \\
& =A \cap B \ldots \text { eq (1) } \\
& \text { Now, } B=B \cap(B \cup X) \\
& \quad=B \cap(A \cup X)[\because A \cup X=B \cup X] \\
& =(B \cap A) \cup(B \cap X)[\quad \text { Distributive law] } \\
& \quad=(B \cap A) \cup \psi[\because B \cap X=\psi] \\
& \quad=B \cap A \\
& =A \cap B \tag{2}
\end{align*}
$$

Hence, from (1) and (2), we obtain $A=B$.
2. Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\psi$.

Answer:

Consider $A=\{0,1\}, B=\{1,2\}$, and $C=\{2,0\}$.
Accordingly, $A \cap B=\{1\}, B \cap C=\{2\}$, and $A \cap C=\{0\}$.
$\therefore A \cap B, B \cap C$, and $A \cap C$ are non-empty.
However, $A \cap B \cap C=\psi$
3. In a survey of 600 students in a school, 150 students were found to be taking tea and 225 taking coffee, 100 were taking both tea and coffee. Find how many students were taking neither tea nor coffee.

Answer:
Consider ${ }_{v}$ be the set of all students who took part in the survey.
Consider ${ }_{r}$ be the set of students taking tea.

Consider ${ }_{c}$ be the set of students taking coffee.
Accordingly, $n(U)=600, n(T)=150, n(C)=225, n(T \cap C)=100$
To find: Number of student taking neither tea nor coffee i.e.. ,
We have to find $n\left(T^{\prime} \cap C^{\prime}\right)$.

$$
\begin{aligned}
& n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime} \\
& =n(U)-n(T \cup C) \\
& =n(U)-[n(T)+n(C)-n(T \cap C)] \\
& =600-[150+225-100] \\
& =600-275 \\
& =325
\end{aligned}
$$

Hence, 325 students were taking neither tea nor coffee.

