FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

CBSE Class 10- Mathematics: Chapter - 8 Introduction to Trigonometry Part 2

Get top class preparation for CBSE/Class-10 right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-10/]- for all subjects of CBSE/Class-10.

Question 7:

If $\sec A=x+\frac{1}{4 x}$, prove that $\sec A+\tan A=2$ xor $\frac{1}{2 x}$.

Answer:

$$
\begin{aligned}
& \sec \varphi=x+\frac{1}{4 x} \\
& \Rightarrow \sec ^{2} \varphi=\left(x+\frac{1}{4 x}\right)^{2}\left(\sec ^{2} \varphi=1+\tan ^{2} \varphi\right) \\
& \tan ^{2} \varphi=\left(x+\frac{1}{4}\right)^{2}-1 \\
& \tan ^{2} \varphi=\left(x-\frac{1}{4}\right)^{2} \\
& \tan ^{2} \varphi= \pm x-\frac{1}{4 x} \\
& \sec \varphi+\tan \varphi=x+\frac{1}{4 x} \pm x-\frac{1}{4 x} \\
& =2 x \operatorname{or} \frac{1}{2 x}
\end{aligned}
$$

Question 8:

If A, B are acute angles and $\sin A=\cos A=\cos B$, then find the value of $A+B$.

Answer:

$$
A+B=90^{\circ}
$$

Question 9:

(a) Solve for , if $\tan 5 \phi=1$

Answer:

$$
\begin{aligned}
& \tan 5 \varphi=1 \\
& \Rightarrow \varphi=\frac{45}{5} \\
& \Rightarrow \varphi=9^{\circ} .
\end{aligned}
$$

(b) Solve for if $\frac{\sin \varphi}{1+\cos \varphi}+\frac{1+\cos \varphi}{\sin \varphi}=4$.

Answer:

$$
\begin{aligned}
& \frac{\sin \varphi}{1+\cos \varphi}+\frac{1+\cos \varphi}{\sin \varphi}=4 \\
& \frac{\sin ^{2} \varphi+1(\cos \varphi)^{2}}{\sin \varphi(1+\cos \varphi)}=4 \\
& \frac{\sin ^{2} \varphi+1+\cos ^{2} \varphi+2 \cos \varphi}{\sin \varphi+\sin \varphi \cos \varphi}=4 \\
& \frac{2+2 \cos \varphi}{\sin \varphi(1+\cos \phi)}=4 \\
& \Rightarrow \frac{2+(1+\cos \varphi)}{\sin \varphi(1+\cos \varphi)}=4 \\
& \Rightarrow \frac{2}{\sin \varphi}=4 \\
& \Rightarrow \sin \varphi=\frac{1}{2} \\
& \Rightarrow \sin \varphi=\sin 30 \\
& \varphi=30^{\circ}
\end{aligned}
$$

Question 10:

If $\frac{\cos \alpha}{\cos \beta}=$ mand $\frac{\cos \alpha}{\sin \beta}=n$, show that $\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$

Answer:

$$
\begin{aligned}
& \frac{\cos \alpha}{\cos \beta}=m \frac{\cos \alpha}{\sin \beta}=n \\
& \Rightarrow m^{2}=\frac{\cos ^{2} \alpha}{\cos \beta} n^{2}=\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}
\end{aligned}
$$

LHS $=\left(m^{2}+n^{2}\right) \cos ^{2} \beta$

$$
\begin{aligned}
& {\left[\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}+\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}\right] \cos ^{2} \beta} \\
& =\cos ^{2} \alpha\left(\frac{1}{\cos ^{2} \beta \sin ^{2} \beta}\right) \cos ^{2} \beta \\
& =\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}=n^{2} \\
& \Rightarrow\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}
\end{aligned}
$$

Question 11:

If $7 \operatorname{cosec} \varphi-3 \cot \varphi=7$, , prove that $7 \cot \varphi-3 \operatorname{cosec} \varphi=3$

Answer:

$$
7 \operatorname{cosec} \varphi-3 \cot \varphi=7
$$

P. T $\cot \varphi-3 \operatorname{cosec} \varphi=3$
$7 \operatorname{cosec} \varphi-3 \cot \varphi=7$
$\Rightarrow 7 \operatorname{cosec} \varphi-7=3 \cot \varphi$
$\Rightarrow 7(\operatorname{cosec} \varphi-1)=3 \cot \varphi$
$\Rightarrow 7(\operatorname{cosec} \varphi-1)(\operatorname{cosec} \varphi+1)=3 \cot \varphi(\operatorname{cosec} \varphi+1)$
$\Rightarrow 7\left(\operatorname{cosec}^{2} \varphi-1\right)=3 \cot \varphi(\operatorname{cosec} \varphi+1)$
$\Rightarrow 7=3 \cot \varphi(\operatorname{cosec} \varphi+1)$
$7 \cot \varphi-3 \operatorname{cosec} \varphi=3$

