FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

CBSE Class 10- Mathematics: Chapter - 5 Arithmetic Progressions Part 1

Get top class preparation for CBSE/Class-10 right from your home: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-10/]- for all subjects of CBSE/Class-10.

One of the Endlessly Alluring Aspects of Mathematics is That Its Thorniest Paradoxes Have a Way of Blooming into Beautiful Theories

Question 1:

The fourth term of an AP is . Prove that its $25^{\text {th }}$ term is triple $11^{\text {th }}$ term.

Answer:

$$
\begin{aligned}
& a_{4}=0 \\
& \Rightarrow a+3 d=0
\end{aligned}
$$

T. P $a 25=3(a 11)$
$\Rightarrow A+24 d=3(a+10 d)$
$\Rightarrow a+24 d=3 a+30 d$
RHS sub $a=-3 d$

$$
-3 d+24 d=21 d
$$

LHS $3 a+30 d$
$-9 d+30 d=21 d$
$L H S=R H S$
Hence proved

Question 2:

Find the $20^{\text {th }}$ term from the end of the AP $3,8,13 \cdots 253$.

Answer:

3, 8, $13 \cdots 253$.
Last term $=253$
a20 from end

$$
\begin{aligned}
& =1-(n-1) d \\
& 253-(20-1) 5
\end{aligned}
$$

253-95

$$
=158
$$

Question 3:

If the $p^{t h}, q^{t h}$ and $r^{\text {th }}$ term of an AP is x, y and respectively, show that

$$
x(q-r)+y(r-p)+z(p-q)=0
$$

Answer:

$$
\begin{aligned}
& p^{\text {th }} \text { term } \Rightarrow x=A+(p-1) D \\
& Q^{\text {th }} \text { term } \Rightarrow y=A+(q-1) D \\
& r^{\text {th }} \text { term } \Rightarrow z=A+(r-1) D \\
& T . P x(q-r)+y(r-p)+z(p-q)=0 \\
& =\{A+(p-1) D\}-(q-r)+\{A+(q-1) D\}(r-p) \\
& +\{A+(r-1) D\}(p-q) \\
& A\{(q-r)+(r-p)+(p-q)\} \\
& +D\{(p-1)(q-r)+(r-1)(r-p)+(r-1)(p-q)\} \\
& \Rightarrow A .0+D p(q-r)+q(r-p)+r(p-q) \\
& -(q-r)-(r-p)-(p-q)\} \\
& =A .0+D .0=0
\end{aligned}
$$

Hence proved

Question 4:

Find the sum of first ${ }_{40}$ positive integers divisible by also find the sum of first ${ }_{20}$ positive integers divisible by or .

Answer:

No's which are divisible by are $6,12 \cdots 240$

$$
\begin{aligned}
& S 40=[240] 6+240 \\
& =20 \times 246 \\
& =4920
\end{aligned}
$$

No's div by 5 or 6
$30,60 \cdots 600$
$[220] 30+600$
$=10 \times 630$
$=10 \times 630$
$=6300$

Question 5:

A man arranges to pay a debt of ₹ 3600 in 40 monthly installments which are in a AP. When 30 installments are paid, he dies leaving one third of the debt unpaid. Find the value of the first installment.

Answer:

Let the value of I installment be $x S_{40}=3600$

$$
\begin{aligned}
& \Rightarrow \frac{40}{2}[2 a+39 d]=3600 \\
& \Rightarrow 2 a+39 d=180 \ldots 1 \\
& S_{30}=\frac{30}{2}[2 a+29 d]=2400 \\
& \Rightarrow 30 a+435 d=2400 \\
& \Rightarrow 2 a+29 d=160 \cdots 2
\end{aligned}
$$

Solve $1 \& 2$ to get

$$
d=2 a=51
$$

I installment $=₹ .51$

