FlexiPrep: Downloaded from flexiprep.com [https://www.flexiprep.com/]

For solved question bank visit doorsteptutor.com [https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

CBSE Class 10- Mathematics: Chapter - 1 Real Numbers Part 1

Get unlimited access to the best preparation resource for CBSE/Class-10 : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/Exams/CBSE/Class-10/]- for all subjects of CBSE/Class-10.

1 Marks Questions

Question 1: Use Euclid Division lemma to show that the square of any positive integer is either of form $3 m o r 3 m+1$ for some integer m.
[Hint: Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$. Now square each of these and show that they can be rewritten in the form $3 m o r 3 m+1$.]

Answer:

Let a be any positive integer and $b=3$.
The $a=3 q+r$ for some integer $q \geqslant 0$
And $r=0,1,2$ because $0 \leqslant r<3$
Therefore, $a=3 q \circ r 3 q+1$ or $3 q+2$
Or,

$$
\begin{aligned}
& a^{2}=(3 q)^{2} \operatorname{or}(3 q+1)^{2} \operatorname{or}(3 q+2)^{2} \\
& a^{2}=(9 q)^{2} \operatorname{or} 9 q^{2}+6 q+1 \operatorname{or} 9 q^{2}+12 q+4 \\
& =3 \times\left(3 q^{2}\right) \operatorname{or} 3\left(3 q^{2}+2 q\right)+1 \text { or } 3\left(3 q^{2}+4 q+1\right)+1 \\
& =3 k_{1} \text { or } 3 k_{2}+1 \text { or } 3 k_{3}+1
\end{aligned}
$$

Where k_{1}, k_{2} and k_{3} are some positive integers?
Hence, it can be said the square of any positive integer is either of the form $3 m o r 3 m+1$.

Question 2:

Express each number as product of its prime factors:
(i) 140
(i) 156
(iv) 5005
(v) 7429

Answer:

(i) $140=2 \times 2 \times 5 \times 7=2^{2} \times 5 \times 7$
(ii) $156=2 \times 2 \times 31=2^{2} \times 3 \times 13$
(iii) $3825=3 \times 3 \times 5 \times 5 \times 17=3^{2} \times 5^{2} \times 17$
(iv) $5005=5 \times 7 \times 11 \times 13$

Question 3:

Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$

Answer:

$$
\operatorname{HCF}(306,657)=9
$$

We know that $L C M \times H C F=$ Product of two numbers

$$
\begin{aligned}
L C M & =\frac{306 \times 657}{H C F}=\frac{306 \times 657}{9} \\
L C M & =22338
\end{aligned}
$$

Question 4:

Check whether ${ }_{6^{n}}$ can end with the digit for any natural number

Answer:

If any number ends with the digit , it should be divisible by 10 .
In other words, it will also be divisible by and as $10=2 \times 5$
Prime Factorization of $6^{n}=(2 \times 3)^{n}$
It can be observed that is not in the prime factorisation of 6^{n}
Hence, for any value of $n, 6^{n}$ will not be divisible by .
Therefore, ${ }_{6}$ cannot end with the digit for any natural number .

Question 5:

Prove that $(\sqrt[3+2]{5})$ is Irrational

Answer:

Let us say $\sqrt[3+2]{5}$ is rational.
Then the co-prime x and y of the given rational number where $(y \neq 0)$ is such that:

$$
\sqrt[3+2]{5}=x / y
$$

Rearranging, we get,

$$
\begin{aligned}
& 2 \sqrt{5}=x / y-3 \\
& \sqrt{5}=\frac{1}{2}\left(\frac{x}{y}-3\right)
\end{aligned}
$$

Since x and y are integers, thus, $\frac{1}{2}\left(\frac{x}{y}-3\right)$ is a rational number.
Therefore, $\sqrt{5}$ is also a rational number. But this confronts the fact that $\sqrt{5}$ is irrational.
Hence, we get that $\sqrt[3+2]{5}$ is irrational.

Question 6:

$7 \times 11 \times 13 \times+15$ is a
(a) Composite number
(b) Whole number
(c) Prime number
(d) None of these

Answer:
(a) and (b) both

