AIEEE - 2002

Physics and Chemistry

1.	Which statemen	t is incorrect ? cycles have same efficie	ency	
	(b) reversible cyc	cle has more efficiency th	nan an irreversible	e one
	• •	is a reversible one		
	· ·	has the maximum efficie		
2.	_		ts is 40 cm. Maxim	num length (wave length in (m) fa
		produced on it is		
_	(a) 20	(b) 80	(c) 40	(d)120
3.	·	_	esistance (R) and	inductance (L) co (nected in series
	and an angular v	-		
	(a) R/ωL	(b) R/(R ² + $\omega^2 L^2$) ^{1/2}	(c) ωL/R	(d) $R/(F - \omega^2 L^2)^{1/2}$
4.	An astronomical	telescope has a large ap	erture to	O . *
	(a) reduce spher	ical aberration	(b) have high re	
	(c) increase spa	n of observation	(d) have low d	persion
5.	The kinetic ener	gy needed to project a b	ody of mas the	e earth surface (radius R) to
	infinity is		•••	→
	(a) mgR/2	(b) 2mgR	(c) n R	(d) mgR/4
6.	If an ammeter is	to be used in place of a	vo ime er, isen we	must connect with the ammeter a
	(a) low resistance	e in parallel	high resistan	ce in parallel
	(c) high resistan	ce in series	(d) fow resistance	ce in series
7.	If in a circular co	il A of radius R, ourre n.	is flowing and in a	nother coil B of radius 2R a current
	2I is flowing, the	n the ratio of the mann ti	c fields B_A and B_B ,	produced by them will be
	(a) 1	(b) 2	(c) 1/2	(d) 4
8.	If two mirrors are	e kept at 60 to each othe	r, then the number	r of images formed by them is
	(a) 5	(b) 6	(c) 7	(d) 8
9.	A wire when con	ected to 220 V mains su	pply has power dis	ssipation P ₁ . Now the wire is cut into
	two equal piece.	w ich are connected in	parallel to the san	ne supply. Power dissipation in this
	case is P	$P_2: P_1$ is		
	(a) 1	(b) 4	(c) 2	(d) 3
10.	If ISSe (energy	is required to ionize the h	nydrogen atom, the	en the energy required to remove an
•	ele tron from n =	= 2 is		
	ą)2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV
11.	be A has both	ends open while tube B I	nas one end close	d, otherwise they are identical. The
	ratio of fundame	ntal frequency of tube A a	and B is	
	(a) 1:2	(b) 1:4	(c) 2:1	(d) 4:1
12.	A tuning fork arr	angement (pair) produce	s 4 beats / sec wi	ith one fork of frquency 288 cps. A
	little wax is place	ed on the unknown fork ar	nd it then produces	s 2 beats /sec. The frequency of the
	unknown fork is			
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps

13.	A wave $y = a \sin(\omega t - kx)$ on a string meets with another wave producing a node at $x = 0$. Then					
	the equation of the unknown wave is					
	(a) $y = a \sin(\omega t + k)$	x)	(b) $y = -a \sin(\omega t + kx)$			
	(c) $y = a \sin(\omega t - k)$	x)	(d) $y = -a \sin(\omega t - kx)$			
14.	On moving a charg	e of 20 coulombs by 2	cm, 2 J of work is done, th	en the potential difference		
	between the points	is				
	(a) 0.1 V	(b) 8 V	(c) 2 V	(d) 0.5 V		
15.		· -	nomenta enter perpendicul			
	(b) they will move u	•	l be same (ignoring the ser	ise of revolution)		
	. , -		than that of the proton			
	(d) path of proton is					
16.	In a simple harmon	ic oscillator, at the mea	an position	O		
	()	s minimum, potential e	· ·	* *		
	` '	potential energies are	_ V			
	. ,	s maximum, potential e potential energies are	• • • • • • • • • • • • • • • • • • • •			
47		-				
17.				nall spheres of mass m are		
			points of the edge of the dis	sc. What is the final angular		
	velocity of the disc		()			
	$\left(a\left(\frac{M+m}{M}\right)\omega_{1}\right)$	(b) $\left(\frac{M+m}{m}\right)$	(c) $\left(\frac{M}{M+4m}\right)\omega_1$	$(d) \left(\frac{M}{M} \right) \omega_1$		
	(a (M)	(°) (m	(M+4m)	(M+2m)		
18.	The minimum velo			erse a flat curve of radius		
		ent of friction 0.6 to avo		(D 0=		
10	(a) 60	(1) 36 + 20 Via sample toly fill	(c) 15	(d) 25		
19.		-	led with water. The velocity e cylinder near its bottom i			
	(a) 10	(b) 20	(c) 25.5	(d) 5		
20.		V ' '	• •	work done is extending it		
	from 5 to 15 cm	ı is				
	(3 10	(b) 8 J	(c) 32 J	(d) 24 J		
21.			other with velocity 2v and	v respectively. The velocity		
	f centre of mass is	s (b) v/3	(c) v/2	(d) zero		
22.	• ,	ed through a spring the	· /	(u) 2610		
	(a) expand	(b) compress	(c) remains same	(d) none of these		
23.	. , .	dy which raises its tem	• •			
	• •	t (b) thermal capacity	(c) specific heat	(d) temperature gradient		
24.	At absolute zero, S		() I	(D		
	(a) non metal	(b) metal	(c) insulator	(d) none of these		

- 25. Electromagnetic waves are transverse in nature is evident by
 - (a) polarization
- (b) interference
- (c) reflection
- (d) diffraction
- 26. Wires 1 and 2 carrying currents i_1 and i_2 respectively are inclined at an angle θ to each other. What is the force on a small element dI of wire 2 at a distance of r from wire 1 (as shown in the figure) due to the magnetic field i_1 of wire 1?

(A) $\frac{\mu_0}{2\pi r}i_1i_2 dItan\theta$

(b) $\frac{\mu_0}{2\pi r}i_1i_2 dl\sin\theta$

(c) $\frac{\mu_0}{2\pi r}i_1i_2$ dlcos θ

- (d) $\frac{\mu_0}{4\pi r}i_1i_2 dI\sin\theta$
- 27. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit
 - (i) electrons
- (ii) protons
- (iii) He2+

(iv) neutrons

The emission at instant can be

- (a) i, ii, iii
- (b) i, ii, iii, iv
- (c) iv

- (d) ii, iii
- 28. Sodium and copper have work functions 2.3 eV and 4.5 V respectively. Then the ratio of the wave lengths is nearest to
 - (a) 1:2
- (b) 4:1
- (c) 2

(d) 1:4

- 29. Formation of covalent bonds in compounds which
 - (a) wave nature of electron
- (b) article nature of electron
- (c) both wave and particle nature of electron (v) none of these
- 30. A conducting square loop of side to an krest tance R moves in its plane with a uniform velocity v perpendicular to one of its sides. A magnetic induction B constant in time and space, pointing perpendicular and into the plane at the loop end everywhere with half the loop outside the field, as shown in figure 7 he induced emf is

- (a) zero
- (b) 1111
- (c) VBL/R
- (d) VBL

- 31. Infra red radiation's detected by
 - (a) spectromet
- (b) pyrometer
- (c) nanometer
- (d) photometer
- 32. If N_0 is the original mass of the substance of half- life period $t_{1/2} = 5$ years, then the amount of substance of after 15 years is
 - $(a, N_0/c)$
- (b) $N_0/16$
- (c) $N_0/2$

- $(d)N_0/4$
- 33. Creasing the temperature, the specific resistance of a conductor and a semiconductor
 - increases for both

- (b) decreases for both
- (c) increases, decreases
- (d) decreases, increases
- 34. If there are n capacitors in parallel connected to V volt source, then the energy stored is equal to
 - (a) CV
- (b) $\frac{1}{2}$ nCV²
- (c) CV²

- (d) $\frac{1}{2n}CV^2$
- 35. Which of the following is more closed to a black body?
 - (a) black board paint (b) green leaves
- (c) black holes
- (d) red roses

49.	If in the circuit, power	er dissipation is 150 W	, then R is	^R^^
	(a) 2Ω	(b) 6Ω		\sim
	(c) 5Ω	(d) 4Ω		
50.	Wavelength of light	used in an optical in	strument are $\lambda_1 = 4000 \mbox{\AA}$	and $\lambda_2 = 5000 \text{Å}$, then
	ratio of their respect	tive resolving powers ((corresponding to λ_1 and	λ_2) is
	(a) 16:25	(b) 9:1	(c) 4:5	(d) 5:4
51.			ion, stands up, then the tim	ne period of the swim will
	(a) increase	(b) decrease	(c) remains same	
	• /		ses if the child is short	
52.	_		n in the lift drops a ball inside th	
			an standing stationary on the	
5 0	(a) g, g	(b) g - a, g - a	(c) g - a, g	(d. a, g 🗸
53.	· ·		an electrochemical cell de	
	(a) (lt) ^{1/2}	(b) IT	(c) I/t	$(d) d^2t$
54.	•	period, for which the one is the r.m.s. velocity		qual to that of an oxygen
54.	molecule at 47° C?	e is the i.m.s. velocity	or a riyurogeri holecdie e	qual to that of all oxygen
	(a) 80 K	(b) - 73 K	(c) 3 K	(d) 20 K
55.	` ,	charged particle unde	rgoing a circ (lar motion in	• ,
	independent of its			
	(a) speed	(b) mass	c) c arge	(d) magnetic induction
56.	·		are eleased from top of an i	. ,
			ximum acceleration down	
57.	(a) solid sphere	(b) hollow sphere	rimary coil are 140 and that	(d) all same
57.			nat in the secondary coil is	till the secondary con are
	(a) 4 A	(1/2)	(c) 6 A	(d) 10 A
58.	` '	capatot ove 100% eff	iciency because we canno	• •
	(a) prevent radiation		(b) find ideal sources	
		erotemperature		
59.			s M and radius R about its	
	(a) MR ² /2	(b) MR ²	(c) 2MR ²	(d) MR ² /4
60.			article of mass m such that	
4			stationary. If the force F_1	is now removed then the
	a cleration of the p		(-) (5 5)/	(-I) - (
C1	F ₁ /m	(b) F_2F_3/mF_1		(d) F ₂ /m
61.			magnitudes is 18 N and the	
			the magnitudes of the force	
62	(a) 12 N, 6 N	(b) 13 N, 5 N	(c) 10 N, 8 N	(d) 16 N, 2 N
62.	-	he two cars are u and 40	uat the specific instant. T	ne ratio of the respective
	(a) 1 : 1	(b) 1:4	(c) 1:8	(d) 1:16
	(α) Ι.Ι	(N) I.T	(0) 1.0	(4) 1.10

	the resulting mixture	e is		
	(a) 7/5	(b) 2/5	(c) 24/16	(d) 12/7
64.	If a charge q is place	ed at the centre of the l	line joining two equal charg	es Q such that the system
	is in equilibrium ther	n the value of q is		
	(a) Q/2	(b) -Q/2	(c) Q/4	(d) -Q/4
65.	Capacitance (in F) of	of a spherical conductor	or with radius 1 m is	
	(a) 1.1×10^{-10}	(b) 10 ⁻⁶	(c) 9×10^{-9}	(d) 10 ⁻³
66.	A light string passing	ng over a smooth ligh	t pulley connects two bloc	cks of masses mand
	(vertically). If the acc	celeration of the syste	m is g/8, then the ratio of t	he masses is
	(a) 8:1	(b) 9:7	(c) 4:3	(d) 5:3
67.	=		dii 1 m and 4m and temper	
	respectively. The rati	o of the energy radiate	ed per second by the first sp	ohere to that by the second
	(a) 1 : 1	(b) 16:1	(c) 4:1	(d) 1:9
68.	` '	ks of masses $m = 2kg$		1
		_	on a frictions surface	$C \longrightarrow B \longrightarrow A \longrightarrow F$
	then what is the tens	sion (in N) in the string	between the blocks P	
	and C?	, ,		
	(a) 9.2	(b) 7.8	(c) 4	(d) 9.8
69.	One end of a massl	ess rope, which pass	e o er a massless and fri	ctionless
	pulley P is tied to a	hook C while the othe	r nd is ree. Maximum ten	sion that c
	the rope can bear is	360 N. With what va	e of maximum safe accele	ration (in
	ms ⁻²) can a man of 6	60 kg climb or the . po	e.	
	(a) 16	(b) 6	(c) 4	(d) 8
70.	A particle of mass r	n moves a seline P	C with velocity v as showr	۱. 🔥
	What is the angular	me nee um of the part	ticle about P?	
	(a) mvL	V	(b) mvl	
	(c) mvr		(d) zero	
71.		ng is used in optical fib		r
	(a) total internal refle	ection (b) scattering	(c) diffraction	302
	(d) refrection			
72.		of a body depends u		
1	(a) m ⁰	(b) m ¹	(c) m ²	(d) m ³
72	Which of the following	ng are not electromag	netic waves?	
	(a) cosmic rays	(b) gamma rays	(c) β-rays	(d) X- rays
74.	•	se dimensions are eq		
	(a) torque and work	(b) stress and energ	y(c) force and stress	(d) force and work
75.	If θ_i , is the inversion cold junction, then	n temperature , $\theta_{_{n}}$ is the	he neutral temperature, θ_{c}	is the temperature of the
	=	(b) $\theta_i - \theta_c = 2\theta_n$	(c) $\frac{\theta_i + \theta_c}{2} = \theta_n$	(d) $\theta_c - \theta_i = 2\theta_n$

1 mole of a gas with $\gamma = 7/5$ is mixed with 1 mole of a gas with $\gamma = 5/3$, then the value of γ for

63.

76.	When H ₂ S is pass (a) HgS	ed through Hg ₂ S we go (b) HgS + Hg ₂ S		(d) Hg ₂ S ₂		
77.		· · ·	S	. ,		
	(c) coagulating the					
	(d) making mud wa	ater soluble				
78.	A square planar co	omplex is formed by hy	bridisation of which atom	ic orbitals ?		
	(a) s, p_x , p_y , d_{yz}	(b) $s, p_x, p_y, d_{x^2-y^2}$	(c) s, p_x, p_y, d_{z^2}	(d) s, p_y, p_z, q_y		
79.	Polymer formation	from monomers starts	s by			
	(a) condensation r	eaction between mond	omers			
	(b) coordinate read	ction between monome	ers			
	(c) conversion of r	nonomer to monomer	ions by protons			
	(d) hydrolysis of m			→		
80.	The type of isome		ntamine chromium (III) ch			
	(a) optical	(b) linkage	(c) ionization	(d) polymerisation		
81.				d to benzyl or an unsaturated		
	group in increasing	g order of inductive effe	ect is			
				$(H_3)_2 - \langle CH - \langle (CH_3)_3 - C - \rangle$		
00			$CH_{2}(1) (CH_{3})_{3}-C - < CH_{3}$	- CH ₂ - (CH ₃) ₂ - CH-		
82.	•	organo metallic com		(d) C U bond		
83.	(a) Mg - Br bond	(b) C - Mg bond		(d) C - H bond		
03.	1 M NaCl and 1 M HCl are presert in a aqueous solution. The solution is (a) not a buffer solution with pl < 7 (b) not a buffer solution with pH > 7					
	(c) a buffer solutio		(d) a buffer solution wit			
84.		both are stell acid an	• •	11 pi 1 > 1		
	(a) (HSO ₄) ⁻¹	(Ma.) O	(c) NH ₃	(d) OH ⁻¹		
85.	` ' ` +'	f an aqueous solution	of $Mg(OH)_2$ be x then its k	` '		
	(a) 4x ³		(c) 27x ⁴	(d) 9x		
86.	Units of rate solusta	ant of first and zero orde	er reactions in terms of mo	larity M unit are respectively		
	(a) sec-1, Msec-	(b) sec ⁻¹ , M	(c) Msec ⁻¹ , sec ⁻¹	(d) M, sec ⁻¹		
87.	In XeF ₂ Xe ₄ , XeF	$\frac{1}{6}$ the numebr of lone p	pairs of Xe are respectivel	у		
4	(a) 2, 3,	(b) 1, 2, 3	(c) 4, 1, 2	(d) 3, 2, 1		
88	n which of the follow	oiwng species the inter	ratomic bond angle is 109	⁰ 28′ ?		
	(a) NH ₃ , (BF ₄) ⁻¹	(b) $(NH_4)^+$, BF_3	(c) NH ₃ , BF ₄	(d) $(NH_2)^{-1}$, BF_3		
89.	For the reaction A	+ 2B \longrightarrow C, rate is	given by $R = [A] [B]^2$ then	the order of the reaction is		
	(a) 3	(b) 6	(c) 5	(d) 7		
90.	RNA is different fr	om DNA because RNA	A contains			
	(a) ribose sugar ar	nd thymine	(b) ribose sugar and ur	acil		
	(c) deoxyribose su	gar and thymine	(d) deoxyribose sugar a	and uracil		

91.	Which of the following are arranged in an increasing order of their bond strengths?				
	(a) $O_2^- < O_2^- < O_2^+ < O_2^{2-}$	(b) $O_2^{2-} < O_2^- < O_2^+$			
	(c) $O_2^- < O_2^{2-} < O_2 < O_2^+$	(d) $O_2^+ < O_2^- < O_2^- < O_2^{2-}$			
92.	If an endothermic reaction is non-spantan at its boiling point, then	eous at freezing point of wa	ater and becomes feasible		
	(a) ΔH is – ve, ΔS is + ve	(b) ΔH and ΔS both ar	re + ve		
	(c) ΔH and ΔS both are – ve	(d) ΔH is + ve, ΔS is -	ve		
93.	A heat engine absorbs heat Q_1 at temperative engine is $J(Q_1 + Q_2)$. This data	ature T_1 and heat Q_2 at tem	perature T ₂ . Work done by		
	 (a) violates 1st law of thermodynamics (c) violates 1st law of thermodynamics if 0 (d) does not violate 1st law of thermodynamics 	Q_2 is -ve	rmodynathics if Q ₁ is -ve		
94.	Most common oxidation states of Ce (cer	ium) are) . ♦		
	(a) $+2$, $+3$ (b) $+2$, $+4$	(c) +3, +4	d) +3, +5		
95.	Arrange Ce ⁺³ , La ⁺³ , Pm ⁺³ and Yb ⁺³ in incre				
	(a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$	(b) Ce ⁺³ Yb ⁺ Pr ⁺³ <			
00	(c) $Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$	(d) Pm ⁺³ < La Ce ⁺³ <			
96.	KO ₂ (potassium super oxide) is used in ox		nd submarines because it		
	(a) absorbs CO ₂ and increases O ₂ conte	(d) produces ozone.			
97.	(c) absorbs CO ₂ A similarity between optical and geometric				
57.	(a) each forms equal number of it on a st				
	(b) If in a compound one is present her s				
	(c) both are included in stereol, merism		·V		
98.	Which of the following toes not show ged		•		
	(a) 1, 2-dichloro - 1- pentene	(b) 1, 3 - dichloro - 2- per	ntene		
	(c) 1, 1- dichloro 1- pentene	(d) 1, 4 - dichloro - 2- per	ntene		
99.	In case of nith ten NCI ₃ is possible but no	ot NCI ₅ while in case of pho	osphorous, PCl ₃ as well as		
	PCI ₅ are not sit e. It is due to				
	(a) avoilability of vacant d orbitals in P but	t not in N			
	(b) Yower enectronegativity of P than N				
1	(c) lower tendency of H - bond formation				
100	6) currence of P in solid while N in gas				
100.	r an ideal gas, number of moles per	litre in terms of its pressu	ure P, gas contant R and		
	temperature T is (a) PT/R (b) PRT	(c) P/RT	(d) RT/P		
101	The formation of gas at the surface of tun	` '	• •		
.01.	(a) 0 (b) 1	(c) 2	(d) insufficient data		
102.	The solubility of Mg(OH) ₂ is S moles/litre.	• •			
	(a) $4S^3$ (b) $3S^4$	(c) 4S ²	(d) S ³		

103.	103. How do we differentiate between Fe3+ and Cr3+ in group III?						
	(a) by taking excess	s of NH ₄ OH solution	(b) by increasing NH ₄ + io	n concentration			
	(c) by decreasing OH ⁻ ion concentration (d) both (b) and (c)						
104.	In a compound C, H	H and N atoms are pr	esent in 9:1:35 by wei	ght. Molecular weight of			
	compound is 108. N	Molecular formula of co	mpound is				
	(a) $C_2H_6N_2$	(b) C_3H_4N	(c) $C_6H_8N_2$	(d) $C_9H_{12}N_3$			
105.	The functional group	o, which is found in am	ino acid is				
	(a) -COOH group	(b) - NH ₂ group	(c) - CH ₃ group	(d) both (a) and (b)			
106.	Conductivity (unit Sie	emen's S) is directly pro	portional to area of the ves	sel and the corce. tration			
	of the solution in it a	nd is inversely proport	ional to the length of the v	essel then the mit of the			
	constant of proportion	onality is					
	(a) Sm mol ⁻¹	(b) Sm ² mol ⁻¹	(c) S ⁻² m ² mol	(c) 2°m mo			
107.	In a hydrogen atom	, if energy of an electr	on in ground state is 13.6	e thei that in the 2nd			
	excited state is		_				
	(a) 1.51 eV	(b) 3.4 eV	(c) 6.04 eV	(d) 13.6 eV			
108.	Which of the following	ng statements is true ?					
	(a) HF is less polar	than HBr	()				
	(b) absolutely pure water does not contain any ions						
	(c) chemical bond for	mation take place when	forces of attraction overcome	e the forces of repulsion			
	(d) in covalency tran	nsference of electron t	akes lace				
109.	Which of the following	ng compounds has wr	ing UP. C name ?				
	(a) $CH_3 - CH_2 - CH_3$		→etmyl butanoate				
	(b) CH -CH-CH	I -CHO> me	yl-butanal				
	(b) CH ₃ -CH-CH		yr batanar				
	СН	70					
	(c) CH ₃ -CH-CH	-CH>≥- methy	/l-3-butanol				
	° I I OH CH	<i>(</i>)					
	0 11 0 11						
		→					
	(d) $CH^3 - C$	$-CH_2 - CH_3 \longrightarrow 2-$	methyl-3-pentanone				
	\sim H ₃						
110.	C. C. LCOOH—CI	$\xrightarrow{2} A \xrightarrow{\text{alc. KOH}} B. Wh$	nat is B?				
•	CH CH COCL	(b) CH CH CHO	(c) CH ₂ = CHCOOH	(4) CICH CH COOH			
		ted by the electrolysis		(d) 01011 ₂ 011 ₂ 00011			
	(a) bauxite	(b) alumina	(c) alumina mixed with m	olten cryolite			
	(d) molten cryolite	(b) alumina	(c) alumina mixeu with m	onen cryonte			
112	-	by leaching with a cya	anide is				
114.	(a) Mg	(b) Ag	(c) Cu	(d) Na			
113	Value of gas consta	` , •	(5) 50	(4) 144			
. 10.	(a) 0.082 litre atm		(c) 8.3.1 mol ⁻¹ K ⁻¹	(d) 83 erg mol ⁻¹ K ⁻¹			
	(4) 0.002 1110 4111	(S) 0.007 oai moi it	(0) 0.0 0 11101 11	(a) oo org mor it			
				(9 <u>}</u> _			

114.	= :	aqueous solution is (-0 = 1.86 °C, find the incr	·	g point of the same solution
		(b) 0.0512 °C		(d) 0.2372 °C
115.	EMF of a cell in term	ns of reduction potenta	al of its left and right electro	odes is
	(a) $E = E_{left} - E_{right}$	(b) $E = E_{left} + E_{right}$	(c) $E = E_{right} - E_{left}$	(d) $E = -(E_{right} + E_{left})$
116.	· ·	ŭ	ů .	5m. What is the uncertainity
	in its velocity (in ms	$^{-1}$) ? (h = 6.6 \times 10 ⁻³⁴ J	s)	
	(a) 2.1×10^{-34}	(b) 0.5×10^{-34}	(c) 2.1×10^{-28}	(d) 0.5×10^{-23}
117.	Which of these will r	not react with acetylen	e ?	
	(a) NaOH	(b) ammonical AgNC	O ₃ (c) Na	(d) HCI
118	Change in volume of	of the system does no	t alter the number of mole	s in which the following
	equilibria?			_()
			(b) $PCl_5(g) \longrightarrow PCl_5(g)$	
		\longrightarrow 2NH ₃ (g)	(d) SO_2CI_2 (g) \longrightarrow S	$SO_2 + I_2 (g)$
119.	For the reactions,) . •
	$C+O_2 \longrightarrow CO_2$)
	$2Zn + O_2 \longrightarrow 2Z$		(le) estimation a soula tria	and for a libit
	(a) carbon can oxidi		(b) oxidation of carbon is	
120		not feasible	(d) Zn can ok lise carbo	ı
120.	(a) Mn ⁺²	(b) Fe ⁺²	um magneti moment?	(d) Cr+2
121	` '	` '	erline Carbon having sp	` '
121.		(b) CH ₃ CH ₂ OH		(d) $CH_2 = \underline{C}H - CH_3$
122.		formed by mixing wo	(5) 13 5 5 13	(a) 5.1. ₂ <u>s</u> .1. 5.1. ₃
	(a) isomeric compou		(b) chiral compounds	
	(c) meso compound		(d) optical isomers	
123.	The differential rate	law the eaction H	$_{2} + I_{2} \rightarrow 2HI$ is	
	. d[H _s] d[I _s]	(H)	d[H¸] d[l¸] 1 d[H	Ŋ
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt}$	= U l	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[H_2]}{dt}$	_
	1 d[H _a]	◆ d[HI]	$\int_{\Omega} d[H_2] \int_{\Omega} d[I_2]$	d[HI]
	(c) $\frac{1}{2} \frac{3(1+2)}{d!} = \frac{1}{2}$ dt	$=$ $-{dt}$	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	dt
124.	Number of sigma bo	onds in P ₄ O ₁₀ is		
	(a) 6	(b) 7	(c) 17	(d) 16
125.	Kn etic Leory of gas			
			(c) only Avogadro's law	(d) all of these
126.	· ·			t forms its oxide MO which
		eating. It forms an ins	soluble hydroxide M(OH) ₂	which is soluble in NaOH
	solution. Then M is	(b) Do	(a) Ca	(d) Do
	(a) Mg	(b) Ba	(c) Ca	(d) Be
127.	It φ denotes reduction	on potential, then whic	h is true ?	
	(a) $E^{\scriptscriptstyle 0}_{\scriptscriptstyle cell} = \varphi_{\scriptscriptstyle right} - \varphi_{\scriptscriptstyle left}$	(b) $E_{cell}^0 = \varphi_{left} + \varphi_{right}$	(c) $E^{\scriptscriptstyle 0}_{\scriptscriptstyle cell} = \varphi_{\scriptscriptstyle left} - \varphi_{\scriptscriptstyle right}$	(d) $E_{cell}^0 = -(\phi_{left} + \phi_{right})$

- (a) antiseptic (b) antibiotic (c) analgesic (d) pesticide

(a)
$$\frac{RT}{f}log\frac{P_1}{P_2}$$
 (b) $\frac{RT}{2f}log\frac{P_1}{P_2}$ (d) none of these

- 132. When primary amine reacts with chlor orms ethanoic KOH then the product is
 - (a) an isocyanide (b) an aldehydd (c) a cyanide (d) an alcohol
- 133. Which of the following reaction is possiled at anode?

(a)
$$2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^2 \rightarrow 4H^+$$
 (b) $F_2 \rightarrow 2F^-$

(c)
$$(1/2) O_2 + 2H^+ \rightarrow H_2$$
 (d) none of these

- 134. The reaction : $(OH_3)_3 C Br \xrightarrow{H_2O} (CH_3)_3 C OH$
 - (a) elimination (eaction(b) substitution reaction(c) free radical faction(d) displacement reaction
- 135. If half the ca a substance is 5 yrs, then the total amount of substance left after 15 years, when in that a ount is 64 grams is
- 6 grams (b) 2 grams (c) 32 grams (d) 8 grams

 15 Cyanide process is used for the extraction of
- (a) barium (b) aluminium (c) boron (d) silver
- 137. Which is the correct order of ionic sizes?

 (a) Ce > Sn > Yb > Lu

 (b) Sn > Ce > Lu > Yb

 (c) Lu > Yb > Sn > Ce

 (d) Sn > Yb > Ce > Lu

 (Atomic Number : Ce = 58, Sn = 50, Yb = 70 and Lu = 71)
- 138. With increase of temperature, which of these changes?
 - (a) molality (b) weight fraction of solute
 - (c) fraction of solute present in water (d) mole fraction

139.	9. The integrated rate equation is $Rt = log C_0 - log C_t$. The straight line graph is obtained by plotting				
	(a) time vs $\log C_t$	(b) $\frac{1}{\text{time}}$ vs C_{t}	(c) time vs C_t	(d) $\frac{1}{\text{time}}$ vs $\frac{1}{C_t}$	
140.		wing reactions, increa f moles at equilibrium	ase in the volume at consta	ant temperature does not	
	(a) $2NH_3 \rightarrow N_2 + 3I_3$	H_{2}	(b) $C(g) + (1/2)O_2(g) \rightarrow$	CO(g)	
	(c) $H_2(g) + O_2(g) -$	2 2 3	(d) none of these	\wedge	
141.	When the sample o electrodes are	f copper with zinc imp	urity is to be purified by ele	ectrolysis, the app opriate	
	cathode	anode	cathode	anode	
		pure copper	(b) impure sample	pure clopper	
140	(c) impure zinc		(d) pure copper	impure ample	
142.	The most stable ion (a) [Fe(OH)]3-	(b) [Fe(Cl) ₆] ³⁻	(c) [Fe(CN) 13-	(d) [Fe(H ₂ O) ₆] ³⁺	
143.	β - particle is emitted				
	(a) conversion of pr	oton to neutron	(b) from outer post orbit		
	(c) conversion of ne	eutron to proton	(d) β-p (rtir e is not emitt	ted	
144.	In mixture A and B	component show -ve o	devia yn as		
	(a) $\Delta V_{mix} > 0$		(b) $\Lambda H_{\text{mix}} < 0$		
	(c) A - B interaction	is weaker than A A	ant B - B interaction		
		is stronger than - A	•		
145.			e of body by 1 K is called	(1)	
1/16	(a) specific heat		(c) water equivalent be crystals respectively, the	(d) none of these	
140.		in the unit cell of their		en the number of atoms of	
	(a) 4 and 2	(b) 2 and 14	(c) 14 and 9	(d) 2 and 4	
147.	Number of atoms in	5 . 5 gram Fe (at.wt.	of Fe = 55.85 g mol^{-1}) is		
	(a) twice that in bu	=	(b) 6.023×10^{22}		
4.40	(c) half that in C. He		(d) $558.5 \times 6.023 \times 10^{23}$		
148.			and ultimately forms [Mn and case respectively i		
1	(2, 4, 3, 1, 5	(b) 1, 5, 3, 7		(d) 3, 5, 7, 1	
146	Which of the followi	ng is a redox reaction	?		
	(a) NaCl+KNO ₃ -	→ NaNO ₃ + KCI	(b) $CaC_2O_4 + 2HCI \rightarrow$	\rightarrow CaCl ₂ + H ₂ C ₂ O ₄	
	(c) $Mg(OH)_2 + 2NH$	$H_4CI \rightarrow MgCl_2 + 2NH_4Cl_3$	OH (d) $Zn+2AgCN \rightarrow 2A$	$Ag + Zn(CN)_2$	
150.	For the reaction CC	$O(g) + (1/2)O_2(g) = CC$	$O_2(g), K_p/K_c$ is		
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) $(RT)^{1/2}$	

AIEEE - 2002

Mathematics

1.	If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and	$\beta^2 = 5\beta - 3$ then the equation having	$\alpha \alpha / f$	3 and	β/α	as its roots	is
• •			9 00/1	Julia	p/w	ao ito i ooto	

(a)
$$3x^2 - 19x + 3 = 0$$

(b)
$$3x^2 + 19x - 3 = 0$$

(c)
$$3x^2 - 19x - 3 = 0$$

(d)
$$x^2 - 5x + 3 = 0$$

2. If
$$y = (x + \sqrt{1 + x^2})^n$$
, then $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is

- (a) n^2y
- (b) -n²y
- (c) -y

(d) $2x^2y$

3. If 1,
$$\log_9 (3^{1-x} + 2)$$
, $\log_3 (4.3^x - 1)$ are in A.P. then x equals

- (a) log₃ 4
- (b) 1+ log₃ 4
- (c) 1 log₄ 3
- (d) loo
- 4. A problem in mathematics is given to three students A, B, C and their respective probability of

solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is a lived is

- (a) $\frac{3}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{2}{3}$

d) $\frac{1}{3}$

5. The period of
$$\sin^2 \theta$$
 is

- (a) π^{2}
- (b) π
- c) >

(d) $\pi/2$

- (a) -1
- (b)

(c) 1

(d) 0

7.
$$\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}}$$

- (a) 1
- (b) -1
- (c) zero

(d) does not exist

- (a) sosceres and right angled
- (b) isosceles but not right angled
- c) he ht angled but not isosceles
- (d) neither right angled nor isoceles
- 9. Na class of 100 students there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class is 72, then what is the average of the girls?
 - (a) 73
- (b) 65
- (c) 68

(d) 74

10.
$$\cot^{-1}(\sqrt{\cos\alpha}) = \tan^{-1}(\sqrt{\cos\alpha}) = x$$
, then $\sin x =$

- (a) $tan^2 \left(\frac{\alpha}{2}\right)$
- (b) $\cot^2\left(\frac{\alpha}{2}\right)$
- (c) $tan \alpha$
- (d) $\cot\left(\frac{\alpha}{2}\right)$

- The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are
 - (a) $(1, \frac{2}{3})$
- (b) (3, 1) (c) (3, 3)
- (d)(1,2)
- A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$ is 12.
 - (a) x y + z = 1
- (b) x + y + z = 5 (c) x + 2y z = 1

- 13. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$
- (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$

- 14. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$
 - (a) e4
- (b) e^2

(d) 1

- The domain of $\sin^{-1} [\log_3 (x/3)]$ is 15.
 - (a) [1, 9]
- (b) [-1,9]
- (d) [-9, -1]

- The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6} + \dots$ 16.

- (d) 4
- Fifth term of a GP is 2, then th of its 9 terms is 17.
 - (a) 256
- (c) 1024
- (d) none of these

- $\int_{0}^{\pi} |\sin x| dx \text{ is}$ 18.
- (c) 10

(d) 18

- en $\lim_{n\to\infty} n[I_n + I_{n-2}]$ equals
- (b) 1
- (c) ∞

(d) zero

- (b) $2+\sqrt{2}$ (c) $\sqrt{2}-1$
- (d) $\sqrt{2} 2$

- $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is }$
 - (a) $\frac{\pi^2}{1}$
- (b) π^2
- (c) zero

(d) $\frac{\pi}{2}$

22.	Let $f(x) = 4$ and $f'(x)$	$x(x) = 4$. Then $\lim_{x \to 2} \frac{xf(2)}{x}$	$\frac{-2f(x)}{-2}$ is given by	
	(a) 2	(b) - 2	(c) - 4	(d) 3
23.	z and w are two nor	n zero complex no.s su	ch that $ z = w $ and Arg z	+ Arg w = π then z equals
	(a) w	(b) $-\overline{\mathbf{w}}$	(c) w	(d) - w
24.	If z-4 < z-2 , its	s solution is given by		
		= -	(c) Re $(z) > 3$	(d) $Re(z) > 2$
25.	The locus of the cer	ntre of a circle which to	uches the circle $ z - z_1 = 8$	a and $ z - z_2 = b$ expally
		mplex numbers) will be		
	(a) an ellipse	(b) a hyperbola	(c) a circle	(d) none of these
26.	Sum of infinite num	ber of terms of GP is 2	0 and sum of their square is	s 100. The contractio of
	GP is			
	(a) 5	(b) 3/5	(c) 8/5	(d 1/5
27.	$1^3 - 2^3 + 3^3 - 4^3 + \dots$	+93 =	_	
	(a) 425	(b) - 425	(c) 475	(d) 475
28.	Difference between	n the corresponding roo	ots of $x^2 + ax + b = 0$ and x	x^2 - bx + a = 0 is same and
	$a \neq b$, then		(1)	
		(b) $a + b - 4 = 0$		(d) $a - b + 4 = 0$
29.	Product of real root	ts of the equation $t^2x^2 + t^2$	- x + 9=	
	(a) is always positive	ve	(b) is alway negative	
	(c) does not exist		(d) cone of these	
30.	•	oots of the equation		
	(a) $p = 1$, $q = -2$		(c) $p = -2, q = 0$	
31.			$a^2 + b^2 + c^2 = 1$ then ab +	
	(a) less than 1		(c) greater than 1	
32.		r digit odd numbers tha	at can be formed using 0, 1	, 2, 3, 5, 7 (using repetition
	allowed) are			
	(a) 216	(b, 375)	(c) 400	(d) 720
33.		an 1000 but less than 4	1000 is formed using the di	gits 0, 1, 2, 3, 4 (repetition
	allowed) is	(1) 405	() 075	(1) 005
0.4	(a) 125	(b) 105	(c) 375	(d) 625
34.		-	1 using 0, 1, 2, 3, 4, 6 and	7 without repetition. Total
	nrum er of such nur		(a) 100	(d) 04 C
25	(a) 312	(b) 3125	(c) 120	(d) 216
~		s from 1 to 100 that are		(d) 20E0
26	(a) 3000	(b) 3050	(c) 3600	(d) 3250
36.		x ^p and x ^q in the expans		ana
	(a) equal	ach athar	(b) equal with opposite si	gns
37.	(c) reciprocals of ea		(d) none of these	n the greatest coefficient in
57.	the expansion is	emolento in the expans	51011 01 (a + b) 15 4030, litel	i ine greatest coemicient in
	(a) 1594	(b) 792	(c) 924	(d) 2924
	· ·	\-, · - -	\-/ 	\-',

38.	·	r just greater than (1-	•	¹⁰⁰⁰⁰ is		(4) 0			
39.	(a) 4	(b) 5 e integers r > 1, n >	(c) 2	nefficient	t of (r ⊥	(d) 3 2) th term	and 3r th t	erm in th	റല
00.	•	$^{\circ}$ are equal, then n eq		Jemolem	. 01 (1 1	<i>L)</i> (01111	and or t	O	10
	(a) 3r	(b) 3r + 1	(c) 2r			(d) 2	r + 1		
				a	b	ax+b			
40.	If a > 0 discriminant	t of ax ² + 2bx + c is -	ve, then	ax+b	c bx+c	$\begin{vmatrix} bx + c \\ 0 \end{vmatrix}$	is	~	•
	(a) +ve	(b) $(ac - b^2) (ax^2 + b^2)$	2bx + c)	(c)	-ve	(d) 0			
41.		$7+\dots$ having n rac	dical sign	s then b	y metho	ds of lat	hemanca	I inducito	on
	which is true								
	(a) $a_n > 7 \forall n \ge 1$	(b) $a_n > 7 \forall n \ge 1$	(c) a _r	$< 4 \forall r$	า≥1	(d) a	$r_{\rm n} < 3 \ \forall \ r$	า≥1	
42.	The sides of a triang	gle are 3x + 4y, 4x+5	37 and 5	x + 57 w	ere x.	o then	the trian	gle is	
	(a) right angled	(b) obtuse angled	. , .				one of the		
43.	Locus of mid point of	of the portion betwee	n the axe	es (f y 20	$\alpha + y$	$\sin \alpha = p$	where p i	s consta	nt
	is								
	(a) $x^2 + y^2 = \frac{4}{p^2}$	(b) $x^2 + y^2 = 4p^2$	$\sqrt{\frac{1}{x^2}}$	$\frac{1}{y^2} + \frac{1}{y^2} =$	$\frac{2}{p^2}$	(d) -x	$\frac{1}{x^2} + \frac{1}{y^2} =$	$\frac{4}{p^2}$	
44.	If the pair of lines as	$x^2 + 2hxy + bx + 29$	2fy +	c = 0 int	tersect o	n the y -	axis then		
	(a) $2fgh = bg^2 + ch^2$	2 (b) $bg^2 \neq ch^2$	(c) ab	c = 2fgh	1	(d) no	one of the	ese	
45.	The point of lines re	epresented y sax2+5	5xy + (a ²	$-2)y^2 = 0$	and per	pendicula	er to each	other fo	r
	(a) two values of a	() a	(c) for	one val	ue of a	(d) fo	r no valu	es of a	
46.	segment of the cit	+ 1 of the circle x^2 + e then value of m is			an angle	of meas	ure 45º at	the maj	or
	(a) $2 \pm \sqrt{3}$	(b) $-2 \pm \sqrt{2}$	(c) -	$1\pm\sqrt{2}$		(d) no	one of the	ese	
47.	The courte of a se	et of circles, each of r	adius 3,	lie on the					ny
4	(a) $4 \le x^2 + y^2 \le 64$ The sentre of the ci	(b) $x^2 + y^2 \le 25$ rcle passing through	(c) x ² (0, 0) an	$+ y^2 \ge 2$ and $(1, 0)$	5 and touc	(d) 3 ching the	$\leq X^2 + y^2$ circle $x^2 + y^2$	≤ 9 + y² = 9 i:	s
						,		•	
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $\left(\frac{1}{2}\right)$	$(\frac{3}{2}, \frac{1}{2})$		(d) ($\left(\frac{1}{2},\frac{3}{2}\right)$		
49.	The equation of a comedian is of length	ircle with origin as a 3a is	centre ar	nd passii	ng throu	gh equila	teral trian	gle who	se

(a) $x^2 + y^2 = 9a^2$ (b) $x^2 + y^2 = 16a^2$ (c) $x^2 + y^2 = 4a^2$ (d) $x^2 + y^2 = a^2$

50.	Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are						
	(a) $x = \pm (y + 2a)$	(b) $y = \pm (x + 2a)$	$(c) x = \pm (y + a)$	(d) $y = \pm (x + a)$			
51.	In a triangle with sides a, b, c, $r_1 > r_2 > r_3$ (which are the ex-radii) then						
	(a) $a > b > c$	(b) $a < b < c$	(c) $a > b$ and $b < c$	(d) $a < b$ and $b > c$			
52.	The number of solution of $\tan x + \sec x = 2\cos x$ in $[0, 2\pi)$ is						
	(a) 2	(b) 3	(c) 0	(d) 1			
53.	Which one is not periodic						
	(a) $ \sin 3x + \sin^2 x$	(b) $\cos\sqrt{x} + \cos^2 x$	(c) $\cos 4x + \tan^2 x$	(d) cos 2x + sin			
54.	$\lim_{n \to \infty} \frac{1^{p} + 2^{p} + 3^{p} + \dots}{n^{p+1}}$	$\frac{n+n^p}{n}$ is		<i>-</i> (1),			
	(a) $\frac{1}{n+1}$	(b) $\frac{1}{1-p}$	(c) $\frac{1}{p} - \frac{1}{p-1}$	(d)			
	•	•	P P .				
55.	$\lim_{x\to 0}\frac{\log x^n-[x]}{[x]},\ n\in \mathbb{N}\ ([x]\ denotes\ greatest\ integer\ less\ than\ or\ equal\ to\ x)$						
		(b) has value 0	(c) has value 1	(d) does not exist			
56.	If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x) - 1}}{\sqrt{x} - 1}$ is						
	(a) 2	(b) 4	(c) 1	(d) 1/2			
57.	f is defined in [-5, 5] as $f(x) = x$ if x is rational and $= -x$ in alonal. Then						
	(a) $f(x)$ is continuous at every x , except $x = 0$						
	(b) f(x) is discontinuous at every x, except x = c						
	(c) f(x) is continuou	-					
	(d) f(x) is discontinuous everywhere						
58.	f(x) and $g(x)$ are two differentiable functions on [0, 2] such that $f''(x) - g''(x) = 0$						
	f'(1) = 2g'(1) = 4f(2) =	$=3g(2)=9\dots f(x)-$	g(x) at x = 3/2 is				
	(a) 0	(2)	(c) 10	(d) 5			
59.	If $f(x + y) = f(x)$. $f(y) \forall x$ and $f(5) = 2$, $f'(0) = 3$ then $f'(5)$ is						
	(a) 0	(b) 1	(c) 6	(d) 2			
60.	The maxicum extance from origin of a point on the curve $x = a \sin t - b \sin \left(\frac{at}{b}\right)$						
	$y + a + b + cos \left(\frac{at}{b}\right)$, both a, b > 0 is						
	a, b	(b) a + b	(c) $\sqrt{a^2 + b^2}$	(d) $\sqrt{a^2 - b^2}$			
61.	$1.2a + 3b + 6c = 0$ (a,b,c \in R) then the quadratic equation $ax^2 + bx + c = 0$ has						
	(a) at least one root	least one root in [0, 1] (b) at least one root in [2, 3]					
	(c) at least one root	(d) none of these					
62.	If $y = f(x)$ makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area of 3/4						
	square unit with the axes then $\int_{0}^{2} xf'(x) dx$ is						
	(a) 3/2	(b) 1	(c) 5/4	(d) -3/4			

63.	The area bounded by the curves $y = \ln x$, $y = \ln x $, $y = \ln x $ and $y = \ln x $ is (a) 4 sq. units (b) 6 sq. units (c) 10 sq. units (d) none of these					
64.	If $ \vec{a} =4$, $ \vec{b} =2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a}\times\vec{b})^2=2$ is equal to					
	(a) 48	(b) 16	(c) ā	(d) none of these		
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$					
	(a) 16	(b) 64	(c) 4	(d) 8		
66.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 7$, $ \vec{b} = 5$, $ \vec{c} = 3$ then angle between					
	vector \vec{b} and \vec{c} is					
	(a) 60	(b) 30°	(c) 45°	(d) 90°		
67.	If $ a =5$, $ b =4$, $ c =3$ thus what will be the value of $ a.b+b.c+c.a $, given that $\vec{a}+\vec{b}+\vec{c}=0$					
	(a) 25	(b) 50	(c) - 25	(d) - 50		
68.	$3\lambda\vec{c} + 2\mu(\vec{a}\times\vec{b}) = 0$ then					
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$		
69.	$\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \vec{c} sector such that $\vec{c} = \vec{a} \times \vec{b}$ then					
	ā : b : c					
	(a) $\sqrt{34} : \sqrt{45} : \sqrt{39}$	$\sqrt{34}:\sqrt{45}:3$	(6, 34 : 39 : 45	(d) 39:35:34		
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ then $\vec{a} + \vec{b} + \vec{c} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$					
	(a) abc	(b) -1	(c) 0	(d) 2		
71.		such that $F(A \cup B) = 3$	$3/4$, $P(A \cap B) = 1/4$, $P(\overline{A})$	$= 2/3$ then $P(\overline{A} \cap B)$ is		
70	(a) 5/12	(1/3/8)	(c) 5/8	(d) 1/4		
72.	distribution of up		mber is considered a succ	ess. Then the variance of		
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4		
73.	The charge or normal to	the plane through (1, 0	0, 0) , (0, 1, 0) which makes	an angle $\pi/4$ with plane		
•	$(a, 1, \sqrt{2}, 1)$	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$,1,1		
N	The sum of two force	ces is 18 N and resulta	ant whose direction is at ri	ght angles to the smaller		
	rce is 12 N. The magnitude of the two forces are					
	(a) 13, 5	(b) 12, 6	(c) 14, 4	(d) 11, 7		
75.	_		ircular wire in a vertical pla wire and in equilibrium, the			
	an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are					
	(a) $T = w \cos \theta$ (c) $T = w$	$R = w \tan \theta$ $R = w \sin \theta$	(b) T = 2w $\cos \theta$ (d)T = w $\sin \theta$	R = w $R = w \cot \theta$		