AIEEE – 2004 (MATHEMATICS)

Important Instructions:

- The test is of $1\frac{1}{2}$ hours duration. i)
- ii) The test consists of 75 questions.
- iii) The maximum marks are 225.
- For each correct answer you will get 3 marks and for a wrong answer you will get -1 mark. iv)
- Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the 1. 4}. The relation R is
 - (1) a function

(2) reflexive

(3) not symmetric

- (4) trang
- The range of the function $f(x) = {}^{7-x}P_{x-3}$ is 2.

(1) {1, 2, 3} (3) {1, 2, 3, 4}

- 3, 4, 5, 6}
- 3. Let z, w be complex numbers such that $z \rightarrow iw = 0$ and arg $zw = \pi$. Then arg z equals
 - $(1)\frac{\pi}{4}$

- 4. is equal to

(2) -2

(3)2

- (4) -1
- +1, then z lies on
 - he real axis

(2) an ellipse

(3) a circle

- (4) the imaginary axis.
- -1 0. The only correct statement about the matrix A is
 - (1) A is a zero matrix

(2) $A^2 = I$

(3) A⁻¹does not exist

(4) A = (-1)I, where I is a unit matrix

$$(1) -2$$

If $a_1, a_2, a_3, ..., a_n, ...$ are in G.P., then the value of the determinant 8.

$$\begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}, \text{ is }$$

$$(3)$$
 2

Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are 9. the roots of the quadratic equation

(1)
$$x^2 + 18x + 16 = 0$$

(2)
$$x^2 - 18x - 16 = 0$$

(3)
$$x^2 + 18x - 16 = 0$$

$$(4) x^2 - 18x + 16 = 0$$

If (1 - p) is a root of quadratic equation $x^2 + px$ 10. hen its roots are

$$(2)$$
 -1, 2

$$(3) 0, -1$$

$$(4)$$
 -1, 1

11. Let
$$S(K) = 1 + 3 + 5 + ... + (2K - 1) = 3 + K^2$$
. Then which of the following is true?

- (1) S(1) is correct
- (2) Principle of mathematical induction can be used to prove the formula
- (3) $S(K) \gg S(K + 1)$

(4)
$$S(K) \Rightarrow S(K+1)$$

How many ways are there to arrange the letters in the word GARDEN with the vowels in 12. alphabetical order?

The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the 13. boxes is empty is

$$(2)$$
 ${}^{8}C_{3}$

If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal ots, then the value of 'q' is

$$(1)\frac{49}{4}$$

- 15. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 \alpha x)^6$ is the same if α equals
 - $(1) -\frac{5}{3}$

(2) $\frac{3}{5}$

(3) $\frac{-3}{10}$

- (4) $\frac{10}{3}$
- 16. The coefficient of x^n in expansion of $(1+x)(1-x)^n$ is
 - (1) (n-1)

(2) $(-1)^n (1-n)$

 $(3)(-1)^{n-1}(n-1)^2$

- (4) $(-1)^{n-1}$ n
- 17. If $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal to
 - $(1)\frac{1}{2}n$

(2) $\frac{1}{2}$ n-1

(3) n - 1

- $(4) \frac{2n-1}{2}$
- 18. Let T_r be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, m \neq n, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a d equals
 - (1) 0

(2) 1

 $(3)\frac{1}{mn}$

- $(4) \frac{1}{m} + \frac{1}{n}$
- 19. The sum of the first n terms of the series $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + ...$ is $\frac{n(n+1)^2}{2}$ when n is even. When n is odd the sum is
 - $(1)\frac{3n(n+1)}{2}$

(2) $\frac{n^2(n+1)}{2}$

(3) $\frac{n(n+1)^2}{4}$

- $(4) \left\lceil \frac{n(n+1)}{2} \right\rceil^2$
- 20. The sum of series $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$ is
 - $\frac{\left(e^2-1\right)}{2}$

(2) $\frac{(e-1)^2}{2e}$

 $(3)\frac{\left(e^2-1\right)}{2e}$

 $(4) \ \frac{\left(e^2-2\right)}{e}$

$$(1) - \frac{3}{\sqrt{130}}$$

(2)
$$\frac{3}{\sqrt{130}}$$

$$(3)\frac{6}{65}$$

$$(4) - \frac{6}{65}$$

If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference between the 22. maximum and minimum values of u² is given by

$$(1) 2(a^2 + b^2)$$

(2)
$$2\sqrt{a^2+b^2}$$

$$(3) \left(a+b\right)^2$$

(4)
$$(a-b)^2$$

The sides of a triangle are $\sin \alpha$, $\cos \alpha$ and $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then the 23. greatest angle of the triangle is

$$(1)60^{\circ}$$

$$(3)120^{\circ}$$

24. A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retires 40 meter away from the tree the angle of elevation becomes 30°. The breadth of the river is

 $\sqrt{3}\cos x + 1$, is onto, then the interval of S is 25. If f: $R \rightarrow S$, defined by

26. The graph of the function y = f(x) is symmetrical about the line x = 2, then

(1)
$$f(x + 2) = f(x - 2)$$

(2)
$$f(2 + x) = f(2 - x)$$

(3)
$$f(x) = f(-x)$$

$$(4) f(x) = -f(-x)$$

The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is

If $\lim_{x\to\infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2$, then the values of a and b, are

(1)
$$a \in \underline{\underline{R}}, b \in \underline{\underline{\underline{R}}}$$

(2)
$$a = 1, b \in R$$

(3)
$$a \in R$$
, $b = 2$

$$(4) a = 1 and b = 2$$

(1) 1

 $(2) \frac{1}{2}$

 $(3)-\frac{1}{2}$

(4) -1

If $x = e^{y + e^{y + ... t_0 \omega}}$, x > 0, then $\frac{dy}{dx}$ is 30.

 $(1)\frac{x}{1+x}$

(2) $\frac{1}{x}$

 $(3)\frac{1-x}{x}$

(4) $\frac{1+x}{x}$

A point on the parabola $y^2 = 18x$ at which the ordinate incre wice the rate of the 31. abscissa is

(1)(2,4)

 $(3)\left(\frac{-9}{8}, \frac{9}{2}\right)$

32. A function y = f(x) has a second order derivative f'(x) = 6(x - 1). If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x - 5, then the function is

 $(1)(x-1)^2$

 $(3)(x+1)^3$

 $(x+1)^2$

 (θ) , (θ) asin (θ) at (θ) always passes through the fixed 33. The normal to the curve x = a(1)

(1)(a, 0)

(3)(0,0)

(2) (0, a) (4) (a, a)

=0, then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval 34. If 2a + 3b + 6

(1) (0, 1) (3) (2, 3)

(2) (1, 2) (4) (1, 3)

35.

(2) e - 1(4) e + 1

 $\frac{\text{SIII}\,x}{\text{sin}(x-\alpha)}\text{d}x = Ax + B\log\text{sin}(x-\alpha) + C$, then value of (A, B) is

(1) $(\sin\alpha, \cos\alpha)$

(2) $(\cos\alpha, \sin\alpha)$

(3) $(-\sin\alpha,\cos\alpha)$

(4) (- $\cos\alpha$, $\sin\alpha$)

 $\int \frac{dx}{\cos x - \sin x}$ is equal to 37.

$$(1)\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+C$$

(2)
$$\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + C$$

$$(3)\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{3\pi}{8}\right)\right|+C$$

$$(4) \frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$

The value of $\int_{0}^{3} |1-x^{2}| dx$ is 38.

$$(1)\frac{28}{3}$$

(2)
$$\frac{14}{3}$$

$$(3)\frac{7}{3}$$

$$(4) \frac{1}{3}$$

The value of $I = \int_{1}^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx$ is 39.

$$(3)^{2}$$

If $\int\limits_0^\pi x f(\sin x) \, dx = A \int\limits_{\hat{x}}^{\pi/2} f(\sin x) \, dx$, then A is 40.

$$(2) \pi$$

$$(3)\frac{\pi}{4}$$

 $= \int_{f(-a)}^{f(a)} g\{x(1-x)\}dx \text{ then the value of } \frac{l_2}{l_1} \text{ is}$ (2) -3 If $f(x) = \frac{e^x}{1 + e^x}$, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1 - x)\}$ 41.

$$(2) -3$$

$$(3) -1$$

The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis is 42.

(3) 3

The differential equation for the family of curves $x^2+y^2-2ay=0$, where a is an arbitrary 43.

$$(1) 2(x^2 - y^2)y' = xy$$

(2)
$$2(x^2 + y^2)y' = xy$$

$$(3)(x^2 + y^2)y' = 2xy$$

$$(4) (x^2 + y^2)y' = 2xy$$

he solution of the differential equation $y dx + (x + x^2y) dy = 0$ is

$$(1) - \frac{1}{xy} = C$$

$$(2) -\frac{1}{xy} + \log y = C$$

$$(3)\frac{1}{xy} + log y = C$$

$$(4) \log y = Cx$$

45. Let A (2, -3) and B(-2, 1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line

$$(1) 2x + 3y = 9$$

(2)
$$2x - 3y = 7$$

$$(3) 3x + 2y = 5$$

$$(4) 3x - 2y = 3$$

46. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1 is

(1)
$$\frac{x}{2} + \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$

(2)
$$\frac{x}{2} - \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$

(3)
$$\frac{x}{2} + \frac{y}{3} = 1$$
 and $\frac{x}{2} + \frac{y}{1} = 1$

(4)
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and $\frac{x}{-2} + \frac{y}{1} = 1$

47. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product, then c has the value

$$(2) -1$$

$$(3)$$
 2

$$(4) -2$$

- 48. If one of the lines given by $6x^2 xy + 4cy^2 = 0$ is 3x + 4y = 0, then dequals
 - (1) 1

$$(2) -1$$

$$(4) -3$$

49. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is

$$(1) 2ax + 2by + (a^2 + b^2 + 4) = 0$$

(2)
$$2ax + 2by - (a^2 + b^2 + 4) = 0$$

$$(3) 2ax - 2by + (a^2 + b^2 + 4) = 0$$

(4)
$$2ax - 2by - (a^2 + b^2 + 4) = 0$$

50. A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is

$$(1)(x-p)^2 = 4qy$$

(2)
$$(x-q)^2 = 4py$$

$$(3)(y-p)^2 = 4qx$$

$$(4) (y-q)^2 = 4px$$

51. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

$$(1) x^2 + y^2 - 2x + 2y - 23 = 0$$

(2)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(3)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(4)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$

52. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on AB as a diameter is

$$(1) x^2 + y^2 - x - y = 0$$

(2)
$$x^2 + y^2 - x + y = 0$$

(3)
$$x^2 + y^2 + x + y = 0$$

(4)
$$x^2 + y^2 + x - y = 0$$

If $a \ne 0$ and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, then

$$(1) d^2 + (2b + 3c)^2 = 0$$

$$(2) d^2 + (3b + 2c)^2 = 0$$

$$(3) d^2 + (2b - 3c)^2 = 0$$

$$(4) d^2 + (3b - 2c)^2 = 0$$

55. A line makes the same angle θ , with each of the x and z axis. If the angle β , which it makes with y-axis, is such that $\sin^2 \beta = 3 \sin^2 \theta$, then $\cos^2 \theta$ equals

$$(1)\frac{2}{3} (2)\frac{1}{5} (4)\frac{2}{5}$$

56. Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is

$$(1)\frac{3}{2}$$

$$(3)\frac{7}{2}$$

$$(2)\frac{5}{2}$$

$$(4)\frac{9}{2}$$

57. A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by

58. If the straight lines x = 1 + s, $y = -3 - \lambda s$, $z = 1 + \lambda s$ and $x = \frac{t}{2}$, y = 1 + t, z = 2 - t with parameters s and t respectively, are co-planar then λ equals

$$\begin{array}{c} (1) -2 \\ (3) -\frac{1}{2} \end{array}$$
 (4) 0

59. The intersection of the spheres $x^2 + y^2 + z^2 + 7x - 2y - z = 13$ and $x^2 + y^2 + z^2 - 3x + 3y$ 4z = 8 is the same as the intersection of one of the sphere and the plane.

(1)
$$x - y - z = 1$$

(2) $x - 2y - z = 1$
(3) $x - y - 2z = 1$
(4) $2x - y - z = 1$

60: Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that no two of these are collinear. If the vector $\vec{a} + 2\vec{b}$ is collinear with \vec{c} and $\vec{b} + 3\vec{c}$ is collinear with \vec{a} (λ being some non-zero scalar) then $\vec{a} + 2\vec{b} + 6\vec{c}$ equals

(1)
$$\lambda \vec{a}$$
 (2) $\lambda \vec{b}$ (3) $\lambda \vec{c}$ (4) 0

61. A particle is acted upon by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ which displace it from a point $\hat{i} + 2\hat{j} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. The work done in standard units by the forces is given by

	(1) 40 (3) 25	(2) 30 (4) 15				
62.	If \overline{a} , \overline{b} , \overline{c} are non-coplanar vectors a $\overline{a} + 2\overline{b} + 3\overline{c}$, $\lambda \overline{b} + 4\overline{c}$ and $(2\lambda - 1)\overline{c}$ are non (1) all values of λ (3) all except two values of λ	and λ is a real number, then the vectors a-coplanar for (2) all except one value of λ (4) no value of λ				
63.	Let \overline{u} , \overline{v} , \overline{w} be such that $ \overline{u} = 1$, $ \overline{v} = 2$, $ \overline{w} = \overline{w}$ along \overline{u} and \overline{v} , \overline{w} are perpendicular to (1) 2 (3) $\sqrt{14}$	= 3 . If the projection \overline{v} along \overline{u} is equal to that of each other then $ \overline{u}-\overline{v}+\overline{w} $ equals (2) $\sqrt{7}$ (4) 14				
64.	Let \bar{a} , \bar{b} and \bar{c} be non-zero vectors such between the vectors \bar{b} and \bar{c} , then $\sin\theta$ except (1) $\frac{1}{3}$ (3) $\frac{2}{3}$					
65.	Consider the following statements: (a) Mode can be computed from histogram. (b) Median is not independent of change of scale (c) Variance is independent of change of origin and scale. Which of these is/are correct? (1) only (a) (2) only (b) (3) only (a) and (b) (4) (a), (b) and (c)					
66.	In a series of 2n observations, half of the standard deviation of the observations is 2, (1) $\frac{1}{n}$	em equal a and remaining half equal –a. If the then $ a $ equals $ (2) \ \sqrt{2} $ $ (4) \ \frac{\sqrt{2}}{n} $				
67:	The probability that A speaks truth is $\frac{4}{5}$, where $\frac{4}{5}$ is $\frac{4}{5}$.	hile this probability for B is $\frac{3}{4}$. The probability that				
	they contradict each other when asked to s (1) $\frac{3}{20}$ (3) $\frac{7}{20}$	peak on a fact is $(2) \frac{1}{5}$ $(4) \frac{4}{5}$				
68.	A random variable X has the probability dis X: 1 2 3 4 5 p(X): 0.15 0.23 0.12 0.10 0.20	tribution: 6 7 8 0.08 0.07 0.05				

For the events E = {X is a prime number} and F = {X < 4}, the probability P (E \cup F) is

(1) 0.87

(2) 0.77

(3) 0.35

(4) 0.50

69. The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is

 $(1)\frac{37}{256}$

 $(2) \frac{219}{256}$

 $(3)\frac{128}{256}$

 $(4) \frac{28}{256}$

70. With two forces acting at a point, the maximum effect is obtained when their resultant is 4N. If they act at right angles, then their resultant is 3N. Then the forces are

(1) $(2 + \sqrt{2})N$ and $(2 - \sqrt{2})N$

- (2) $(2+\sqrt{3})N$ and $(2-\sqrt{3})N$
- $(3)\left(2+\frac{1}{2}\sqrt{2}\right)N$ and $\left(2-\frac{1}{2}\sqrt{2}\right)N$
- (4) $\left(2 + \frac{1}{2}\sqrt{3}\right)$ N and $\left(2 + \frac{1}{2}\sqrt{3}\right)$ N

71. In a right angle $\triangle ABC$, $\angle A = 90^\circ$ and sides a, b, c are respectively, 5 cm, 4 cm and 3 cm. If a force \vec{F} has moments 0, 9 and 16 in N cm. units respectively about vertices A, B and C, then magnitude of \vec{F} is

(1) 3

(2)

(3)5

4) 9

72. Three forces \vec{P} , \vec{Q} and \vec{R} acting along IA, IB and IC, where I is the incentre of a \triangle ABC, are in equilibrium. Then \vec{P} : \vec{Q} : \vec{R} is

 $(1)\cos\frac{A}{2}:\cos\frac{B}{2}:\cos\frac{C}{2}$

(2) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$

(3) $\sec \frac{A}{2}$: $\sec \frac{B}{2}$: $\sec \frac{C}{2}$

(4) $\csc \frac{A}{2} : \csc \frac{B}{2} : \csc \frac{C}{2}$

73. A particle moves towards east from a point A to a point B at the rate of 4 km/h and then towards north from B to C at the rate of 5 km/h. If AB = 12 km and BC = 5 km, then its average speed for its journey from A to C and resultant average velocity direct from A to C are respectively

 $(1)^{\frac{17}{4}}$ km/h and $\frac{13}{4}$ km/h

(2) $\frac{13}{4}$ km/h and $\frac{17}{4}$ km/h

(3) $\frac{13}{9}$ km/h and $\frac{13}{9}$ km/h

(4) $\frac{13}{9}$ km/h and $\frac{17}{9}$ km/h

74. A velocity $\frac{1}{4}$ m/s is resolved into two components along OA and OB making angles 30° and

45° respectively with the given velocity. Then the component along OB is

(1) $\frac{1}{8}$ m/s

(2) $\frac{1}{4}(\sqrt{3}-1)$ m/s

(3) $\frac{1}{4}$ m/s

(4) $\frac{1}{8}(\sqrt{6}-\sqrt{2})$ m/s

AIEEE - 2004 (MATHEMATICS)

ANSWERS

1.	3	16.	2	31. 4	46. 4	61. 1
2.	1	17.	1	32. 2	47. 3	62. 3
3.	3	18.	1	33. 1	48. 4	63. 3
4.	2	19.	2	34. 1	49. 2	64. 4
5.	4	20.	2	35. 2	50. 1	65. 3
6.	2	21.	1	36. 2	51. 1	66. 3
7.	2	22.	4	37. 4	52. 1	67. 3
8.	1	23.	3	38. 1	53. 1	68. 🙎
9.	4	24.	1	39. 3	54. 2	69. 4
10.	3	25.	4	40. 2	55. 3	70. 3
11.	4	26.	2	41. 1	56. 3	71. 3
12.	3	27.	2	42. 1	57. 2	72. 1
13.	4	28.	2	43. 3	58. 1	73. 1
14.	1	29.	3	44. 2	59. 4	74. 4
15.	3	30.	3	45. 1	60. 🕢	75. 2

AIEEE – 2004 (MATHEMATICS)

SOLUTIONS

- 1. $(2,3) \in R$ but $(3,2) \notin R$. Hence R is not symmetric.
- 2. $f(x) = {}^{7-x}P_{x-3}$ $7-x \ge 0 \quad \Rightarrow \quad x \le 7$ $x-3 \ge 0 \quad \Rightarrow \quad x \ge 3,$ and $7-x \ge x-3 \quad \Rightarrow \quad x \le 5$ $\Rightarrow 3 \le x \le 5 \Rightarrow x = 3, 4, 5 \Rightarrow \text{Range is } \{1, 2, 3\}.$
- 3. Here $\omega = \frac{z}{i} \Rightarrow \arg\left(z.\frac{z}{i}\right) = \pi \Rightarrow 2\arg(z) \arg(i) = \pi \Rightarrow \arg(z) = \frac{3\pi}{4}$
- $4. \hspace{1cm} z = \left(p + iq\right)^3 = p \! \left(p^2 3q^2\right) iq \! \left(q^2 3p^2\right)$

$$\Rightarrow \quad \frac{x}{p} = p^2 - 3q^2 \quad \& \quad \frac{y}{q} = q^2 - 3p^2 \Rightarrow \quad \frac{\frac{x}{p} + \frac{y}{q}}{\left(p^2 + q^2\right)} - 2.$$

- 5. $|z^2 1|^2 = (|z|^2 + 1)^2 \Rightarrow (z^2 1)(\overline{z}^2 1) = |z|^4 + 2|z|^2$ $\Rightarrow z^2 + \overline{z}^2 + 2z\overline{z} = 0 \Rightarrow z + \overline{z} = 0$ $\Rightarrow R(z) = 0 \Rightarrow z \text{ lies on the imaginary axis.}$
- 6. $A.A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I.$
- 7. $AB = I \implies A(10 B) = 10 I$ $\Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 5 \alpha \\ 0 & 10 & \alpha 5 \\ 0 & 0 & 5 + \alpha \end{bmatrix} = 10 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ if } \alpha = 5.$ $| \log a_n \log a_n \log a_{n+2} |$
- 8. $\begin{vmatrix} \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}$ $C_3 \rightarrow C_3 C_2, C_2 \rightarrow C_3 C_1$ $\begin{vmatrix} \log a_n & \log r & \log r \\ \log a_{n+3} & \log r & \log r \end{vmatrix} = 0$ (where r is a common ratio). $|\log a_{n+6} & \log r & \log r \end{vmatrix}$
- 9. Let numbers be a, b \Rightarrow a + b = 18, \sqrt{ab} = 4 \Rightarrow ab = 16, a and b are roots of the equation

$$\Rightarrow x^2 - 18x + 16 = 0.$$

10. (3)
$$(1-p)^2 + p(1-p) + (1-p) = 0$$
 (since $(1-p)$ is a root of the equation $x^2 + px + (1-p) = 0$)
$$\Rightarrow (1-p)(1-p+p+1) = 0$$

$$\Rightarrow 2(1-p) = 0 \Rightarrow (1-p) = 0 \Rightarrow p = 1$$
 sum of root is $\alpha + \beta = -p$ and product $\alpha\beta = 1-p = 0$ (where $\beta = 1-p = 0$)

11.
$$S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^{2}$$

$$S(k + 1) = 1 + 3 + 5 + \dots + (2k - 1) + (2k + 1)$$

$$= (3 + k^{2}) + 2k + 1 = k^{2} + 2k + 4 \quad [from S(k) = 3 + k^{2}]$$

$$= 3 + (k^{2} + 2k + 1) = 3 + (k + 1)^{2} = S(k + 1).$$
Although S(k) in itself is not true but it considered true will always imply towards S(k + 1).

- 12. Since in half the arrangement A will be before E and other half E will be before A. Hence total number of ways = $\frac{6!}{2}$ = 360.
- 13. Number of balls = 8 number of boxes = 3 Hence number of ways = ${}^{7}C_{2}$ = 21.
- 14. Since 4 is one of the root of $x^2 + px + 12 = 0 \Rightarrow 16 + 4p + 12 = 0 \Rightarrow p = -7$ and equation $x^2 + px + q = 0$ has equal roots $\Rightarrow D = 49 4q = 0 \Rightarrow q = \frac{49}{4}$
- 15. Coefficient of Middle term in $(1 \alpha x)^4 \Rightarrow t_3 = {}^4C_2 \cdot \alpha^2$ Coefficient of Middle term in $(1 - \alpha x)^6 = t_4 = {}^6C_3 (-\alpha)^3$ ${}^4C_2\alpha^2 = -{}^6C_3\alpha^3 \Rightarrow -6 = 20\alpha \Rightarrow \alpha = \frac{-3}{10}$

 $\Rightarrow \alpha + 0 = -1 \Rightarrow \alpha = -1 \Rightarrow \text{Roots are } 0, -1$

17.
$$t = \sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} + \sum_{r=0}^{n} \frac{n-r}{{}^{n}C_{n-r}} = \sum_{r=0}^{n} \frac{n-r}{{}^{n}C_{r}} \quad \left(\because {}^{n}C_{r} = {}^{n}C_{n-r} \right)$$

$$2t_n = \sum_{r=0}^{n} \frac{r+n-r}{{}^{n}C_r} = \sum_{r=0}^{n} \frac{n}{{}^{n}C_r} \Rightarrow t_n = \frac{n}{2} \sum_{r=0}^{n} \frac{1}{{}^{n}C_r} = \frac{n}{2} S_n \Rightarrow \frac{t_n}{S_n} = \frac{n}{2} S_n$$

18.
$$T_m = \frac{1}{n} = a + (m-1)d$$
(1)
and $T_n = \frac{1}{m} = a + (n-1)d$ (2)

from (1) and (2) we get
$$a = \frac{1}{mn}$$
, $d = \frac{1}{mn}$
Hence $a - d = 0$

19. If n is odd then
$$(n-1)$$
 is even \Rightarrow sum of odd terms $=\frac{\left(n-1\right)n^2}{2}+n^2=\frac{n^2\left(n+1\right)}{2}$.

20.
$$\frac{e^{\alpha} + e^{-\alpha}}{2} = 1 + \frac{\alpha^{2}}{2!} + \frac{\alpha^{4}}{4!} + \frac{\alpha^{6}}{6!} + \dots$$

$$\frac{e^{\alpha} + e^{-\alpha}}{2} - 1 = \frac{\alpha^{2}}{2!} + \frac{\alpha^{4}}{4!} + \frac{\alpha^{6}}{6!} + \dots$$
put $\alpha = 1$, we get
$$\frac{\left(e - 1\right)^{2}}{2e} = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$$

21.
$$\sin \alpha + \sin \beta = -\frac{21}{65}$$
 and $\cos \alpha + \cos \beta = -\frac{27}{65}$.

Squaring and adding, we get

$$2 + 2\cos(\alpha - \beta) = \frac{1170}{(65)^2}$$

$$\Rightarrow \cos^2\left(\frac{\alpha-\beta}{2}\right) = \frac{9}{130} \Rightarrow \cos\left(\frac{\alpha-\beta}{2}\right) = \frac{3}{30}$$

$$\left(\because \frac{\pi}{2} < \frac{\alpha - \beta}{2} < \frac{3\pi}{2}\right).$$

b

22.
$$u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$$

$$= \sqrt{\frac{a^2 + b^2}{2} + \frac{a^2 - b^2}{2} \cos 2\theta} + \sqrt{\frac{a^2 + b^2}{2} + \frac{b^2 - a^2}{2} \cos 2\theta}$$

$$\Rightarrow u^2 = a^2 + b^2 + 2\sqrt{\frac{a^2 - b^2}{2}} + \sqrt{\frac{a^2 - b^2}{2} + \frac{b^2 - a^2}{2} \cos^2 2\theta}$$

min value of $u^2 = a^2 + b^2 + 2ab$ max value of $u^2 = 2(a^2 + b^2)$

$$\Rightarrow u_{\text{max}}^2 - u_{\text{min}}^2 = (a - b)^2$$
.

Greatest side is $\sqrt{1 + \sin \alpha \cos \alpha}$, by applying cos rule we get greatest angle = 120°.

24.
$$\tan 30^{\circ} = \frac{h}{40 + b}$$

25.

$$\sqrt{3} \, h = 40 + b$$

$$an60^{\circ} = h/b \Rightarrow h = \sqrt{3} b$$
(2

$$-2 \le \sin x - \sqrt{3}\cos x \le 2 \implies -1 \le \sin x - \sqrt{3}\cos x + 1 \le 3$$

 \Rightarrow range of f(x) is [-1, 3].

26. If
$$y = f(x)$$
 is symmetric about the line $x = 2$ then $f(2 + x) = f(2 - x)$.

27.
$$9-x^2 > 0$$
 and $-1 \le x-3 \le 1 \implies x \in [2, 3)$

$$28. \qquad \lim_{x\to\infty} \left(1+\frac{a}{x}+\frac{b}{x^2}\right)^{2x} = \lim_{x\to\infty} \left(1+\frac{a}{x}+\frac{b}{x^2}\right)^{\left(\frac{1}{\frac{a}{x}+\frac{b}{x^2}}\right)\times 2x\times \left(\frac{a}{x}+\frac{b}{x^2}\right)} = e^{2a} \implies a=1,\ b\in R$$

29.
$$f(x) = \frac{1 - \tan x}{4x - \pi} \implies \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} = -\frac{1}{2}$$

30.
$$x = e^{y + e^{y + e^{y + \dots \infty}}} \Rightarrow x = e^{y + x}$$

$$\Rightarrow \ln x - x = y \Rightarrow \frac{dy}{dx} = \frac{1}{x} - 1 = \frac{1 - x}{x}.$$

31. Any point be
$$\left(\frac{9}{2}t^2, 9t\right)$$
; differentiating $y^2 = 18x$

$$\Rightarrow \frac{dy}{dx} = \frac{9}{y} = \frac{1}{t} = 2 \text{ (given)} \Rightarrow t = \frac{1}{2}.$$

$$\Rightarrow \text{Point is } \left(\frac{9}{8}, \frac{9}{2}\right)$$

32.
$$f''(x) = 6(x-1) \Rightarrow f'(x) = 3(x-1)^2 + c$$

and $f'(2) = 3 \Rightarrow c = 0$
 $\Rightarrow f(x) = (x-1)^3 + k$ and $f(2) = 1 \Rightarrow k = 0$
 $\Rightarrow f(x) = (x-1)^3$.

33. Eliminating θ , we get $(x-a)^2 + y^2 = a^2$. Hence normal always pass through (a, 0).

34. Let
$$f'(x) = ax^2 + bx + a \Rightarrow f(x) = \frac{ax^3}{3} + \frac{bx^2}{2} + cx + d$$

$$\Rightarrow f(x) = \frac{1}{6} \left(2ax^3 + 3bx^2 + 6cx + 6d \right), \text{ Now } f(1) = f(0) = d, \text{ then according to Rolle's theorem}$$

$$\Rightarrow f'(x) = ax^2 + bx + c = 0 \text{ has at least one root in } (0, 1)$$

35.
$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}} = \int_{0}^{1} e^{x} dx = (e-1)$$

36. Put
$$x - \alpha = t$$

$$\Rightarrow \int \frac{\sin(\alpha + t)}{\sin t} dt = \sin \alpha \int \cot t dt + \cos \alpha \int dt$$

$$= \cos \alpha (x - \alpha) + \sin \alpha \ln |\sin t| + c$$

$$A = \cos \alpha, B = \sin \alpha$$

$$37. \qquad \int \frac{dx}{\cos x - \sin x} = \frac{1}{\sqrt{2}} \int \frac{1}{\cos \left(x + \frac{\pi}{4}\right)} dx = \frac{1}{\sqrt{2}} \int \sec \left(x + \frac{\pi}{4}\right) dx = \frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2} + \frac{3\pi}{8}\right)\right| + C$$

$$38. \qquad \int\limits_{-2}^{-1} \Big(x^2-1\Big) dx + \int\limits_{-1}^{1} \Big(1-x^2\Big) dx + \int\limits_{1}^{3} \Big(x^2-1\Big) dx = \frac{x^3}{3} - x \bigg|_{-2}^{-1} + x - \frac{x^3}{3} \bigg|_{-1}^{1} + \frac{x^3}{3} - x \bigg|_{1}^{3} = \frac{28}{3} \ .$$

$$39. \qquad \int\limits_{0}^{\frac{\pi}{2}} \frac{\left(\sin x + \cos x\right)^{2}}{\sqrt{\left(\sin x + \cos x\right)^{2}}} dx = \int\limits_{0}^{\frac{\pi}{2}} \left(\sin x + \cos x\right) dx \ = \left|-\cos x + \sin x\right|_{0}^{\frac{\pi}{2}} \ = 2.$$

40. Let
$$I = \int_{0}^{\pi} xf(\sin x)dx = \int_{0}^{\pi} (\pi - x)f(\sin x)dx = \pi \int_{0}^{\pi} f(\sin x)dx - I$$
 (since $f(2a - x) = f(x)$)
$$\Rightarrow I = \pi \int_{0}^{\pi/2} f(\sin x)dx \Rightarrow A = \pi.$$

$$41. \qquad f(-a) + f(a) = 1 \\ I_1 = \int\limits_{f(-a)}^{f(a)} xg\{x(1-x)\}dx = \int\limits_{f(-a)}^{f(a)} (1-x)g\{x(1-x)\}dx \qquad \left(\because \int\limits_a^b f(x)dx = \int\limits_a^b f(a+b-x)dx\right) \\ 2I_1 = \int\limits_{f(-a)}^{f(a)} g\{x(1-x)\}dx = I_2 \implies I_2 / I_1 = 2.$$

42. Area =
$$\int_{1}^{2} (2-x)dx + \int_{2}^{3} (x-2)dx = 1$$
.

- 43. 2x + 2yy 2ay' = 0 $a = \frac{x + yy}{y'}$ (eliminating a)
- 45. $y dx + x dy + x^2y dy = 0.$ $\frac{d(xy)}{x^2y^2} + \frac{1}{y}dy = 0 \Rightarrow -\frac{1}{xy} + \log y = C.$
- 45. If C be (h, k) then centroid is (h/3, (k-2)/3) it lies on 2x + 3y = 1. \Rightarrow locus is 2x + 3y = 9.

46.
$$\frac{x}{a} + \frac{y}{b} = 1$$
 where $a + b = -1$ and $\frac{4}{a} + \frac{3}{b} = 1$
 $\Rightarrow a = 2, b = -3 \text{ or } a = -2, b = 1.$
Hence $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$.

47.
$$m_1 + m_2 = -\frac{2c}{7}$$
 and $m_1 m_2 = -\frac{1}{7}$
 $m_1 + m_2 = 4m_1m_2$ (given)
 $\Rightarrow c = 2$.

48.
$$m_1 + m_2 = \frac{1}{4c}$$
, $m_1 m_2 = \frac{6}{4c}$ and $m_1 = -\frac{3}{4}$. Hence $c = -3$.

49. Let the circle be
$$x^2 + y^2 + 2gx + 2fy + c = 0 \Rightarrow c = 4$$
 and it passes through (a/b) $\Rightarrow a^2 + b^2 + 2ga + 2fb + 4 = 0$. Hence locus of the centre is $2ax + 2by - (a^2 + b^2 + 4) = 0$.

50. Let the other end of diameter is (h, k) then equation of circle is
$$(x-h)(x-p)+(y-k)(y-q)=0$$

Put $y=0$, since x-axis touches the circle $\Rightarrow x^2-(h+p)x+(hp+kq)=0 \Rightarrow (h+p)^2=4(hp+kq)$ $\Rightarrow (x-p)^2=4qy$. (D = 0)

51. Intersection of given lines is the centre of the circle i.e.
$$(1, -1)$$
 Circumference = $10\pi \Rightarrow \text{radius } r = 5$ $\Rightarrow \text{ equation of circle is } x^2 + y^2 - 2x + 2y - 23 = 0.$

- Points of intersection of line y = x with $x^2 + y^2 2x = 0$ are (0, 0) and (1, 1) hence equation of circle having end points of diameter (0, 0) and (1, 1) is $x^2 + y^2 x y = 0$.
- 53. Points of intersection of given parabolas are (0, 0) and (4a, 4a) \Rightarrow equation of line passing through these points is y = x On comparing this line with the given line 2bx + 3cy + 4d = 0, we get d = 0 and $2b + 3c = 0 \Rightarrow (2b + 3c)^2 + d^2 = 0$.

54. Equation of directrix is
$$x = a/e = 4 \Rightarrow a = 2$$
 $b^2 = a^2 (1 - e^2) \Rightarrow b^2 = 3$ Hence equation of ellipse is $3x^2 + 4y^2 = 12$.

56.
$$I = \cos \theta$$
, $m = \cos \theta$, $n = \cos \beta$
 $\cos^2 \theta + \cos^2 \theta + \cos^2 \beta = 1 \Rightarrow 2 \cos^2 \theta = \sin^2 \beta = 3 \sin^2 \theta$ (given) $\cos^2 \theta = 3/5$.

56. Given planes are
$$2x + y + 2z - 8 = 0, \ 4x + 2y + 4z + 5 = 0 \Rightarrow 2x + y + 2z + 5/2 = 0$$
 Distance between planes
$$= \frac{|\ d_1 - d_2\ |}{\sqrt{a^2 + b^2 + c^2}} = \frac{|-8 - 5/2\ |}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{7}{2}.$$

57. Any point on the line $\frac{x}{1} = \frac{y+a}{1} = \frac{z}{1} = t_1$ (say) is $(t_1, t_1 - a, t_1)$ and any point on the line $\frac{x+a}{2} = \frac{y}{1} = \frac{z}{1} = t_2$ (say) is $(2t_2 - a, t_2, t_2)$.

Now direction cosine of the lines intersecting the above lines is proportional to $(2t_2 - a - t_1, t_2 - t_1 + a, t_2 - t_1)$.

Hence $2t_2 - a - t_1 = 2k$, $t_2 - t_1 + a = k$ and $t_2 - t_1 = 2k$

On solving these, we get $t_1 = 3a$, $t_2 = a$.

Hence points are (3a, 2a, 3a) and (a, a, a).

- 58. Given lines $\frac{x-1}{1} = \frac{y+3}{-\lambda} = \frac{z-1}{\lambda} = s$ and $\frac{x}{1/2} = \frac{y-1}{1} = \frac{z-2}{-1} = t$ are coplanar then plan passing through these lines has normal perpendicular to these lines \Rightarrow a b λ + c λ = 0 and $\frac{a}{2}$ + b c = 0 (where a, b, c are direction ratios of the normal to the plan) On solving, we get λ = -2.
- 59. Required plane is $S_1 S_2 = 0$ where $S_1 = x^2 + y^2 + z^2 + 7x - 2y - z - 13 = 0$ and $S_2 = x^2 + y^2 + z^2 - 3x + 3y + 4z - 8 = 0$ $\Rightarrow 2x - y - z = 1$.
- 60. $(\vec{a} + 2\vec{b}) = t_1 \vec{c}$ (1) and $\vec{b} + 3\vec{c} = t_2 \vec{a}$...(2) (1) $-2 \times (2) \Rightarrow \vec{a} (1 + 2t_2) + \vec{c} (-t_1 6) = 0 \Rightarrow 1 + 2t_2 = 0 \Rightarrow t_2 = -1/2 \& t_1 = -6$. Since \vec{a} and \vec{c} are non-collinear. Putting the value of t_1 and t_2 in (1) and (2), we get $\vec{a} + 2\vec{b} + 6\vec{c} = \vec{0}$.
- Work done by the forces \vec{F}_1 and \vec{F}_2 is $(\vec{F}_1 + \vec{F}_2) \cdot \vec{d}$, where \vec{d} is displacement According to question $\vec{F}_1 + \vec{F}_2 = (4\hat{i} + \hat{j} 3\hat{k}) + (3\hat{i} + \hat{j} \hat{k}) = 7\hat{i} + 2\hat{j} 4\hat{k}$ and $\vec{d} = (5\hat{i} + 4\hat{j} + \hat{k}) (4\hat{i} + 2\hat{j} + 3\hat{k}) = 4\hat{i} + 2\hat{j} 2\hat{k}$. Hence $(\vec{F}_1 + \vec{F}_2) \cdot \vec{d}$ is 40.
- 63. Condition for given three vectors to be coplanar is $\begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & 2\lambda 1 \end{vmatrix} = 0 \Rightarrow \lambda = 0, 1/2.$

Hence given vectors will be non coplanar for all real values of λ except 0, 1/2.

63. Projection of \overline{v} along \overline{u} and \overline{w} along \overline{u} is $\frac{\overline{v} \cdot \overline{u}}{|\overline{u}|}$ and $\frac{\overline{w} \cdot \overline{u}}{|\overline{u}|}$ respectively

According to question $\frac{\overline{v} \cdot \overline{u}}{\mid \overline{u} \mid} = \frac{\overline{w} \cdot \overline{u}}{\mid \overline{u} \mid} \Rightarrow \overline{v} \cdot \overline{u} = \overline{w} \cdot \overline{u}$. and $\overline{v} \cdot \overline{w} = 0$

 $\mid \overline{u} - \overline{v} + \overline{w}\mid^2 = \mid \overline{u}\mid^2 + \mid \overline{v}\mid^2 + \mid \overline{w}\mid^2 - 2\overline{u} \cdot \overline{v} + 2\overline{u} \cdot \overline{w} - 2\overline{v} \cdot \overline{w} = 14 \Rightarrow \mid \overline{u} - \overline{v} + \overline{w}\mid = \sqrt{14} \; .$

64.
$$(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a} \Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} = (\frac{1}{3} |\vec{b}| |\vec{c}| + (\vec{b} \cdot \vec{c})) \vec{a} \Rightarrow \vec{a} \cdot \vec{c} = 0 \text{ and } \frac{1}{3} |\vec{b}| |\vec{c}| + (\vec{b} \cdot \vec{c}) = 0$$

$$\Rightarrow |\vec{b}| |\vec{c}| (\frac{1}{3} + \cos\theta) = 0 \Rightarrow \cos\theta = -1/3 \Rightarrow \sin\theta = \frac{2\sqrt{2}}{3} .$$

- 65. Mode can be computed from histogram and median is dependent on the scale. Hence statement (a) and (b) are correct.
- 66. $x_i = a \text{ for } i = 1, 2,, n \text{ and } x_i = -a \text{ for } i = n,, 2n$ $S.D. = \sqrt{\frac{1}{2n} \sum_{i=1}^{2n} \left(x_i \overline{x}\right)^2} \implies 2 = \sqrt{\frac{1}{2n} \sum_{i=1}^{2n} x_i^2} \qquad \left(\text{Since } \sum_{i=1}^{2n} x_i = 0\right) \implies 2 \sqrt{\frac{1}{2n} 2na^2} \implies |a| = 2$
- 67. E_1 : event denoting that A speaks truth E_2 : event denoting that B speaks truth Probability that both contradicts each other = $P(E_1 \cap E_2) \cdot P(E_1 \cap E_2) = \frac{4}{5} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{3}{4} = \frac{7}{20}$
- 68. $P(E \cup F) = P(E) + P(F) P(E \cap F) = 0.62 + 0.50 0.35 = 0.35$
- 69. Given that n p = 4, $n p q = 2 \Rightarrow q = 1/2$, p = 1/2, $n = 8 \Rightarrow p(x = 2) = {}^{8}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{6} = \frac{28}{256}$
- 70. P + Q = 4, $P^2 + Q^2 = 9 \Rightarrow P = 2 + \sqrt{2}$ N and $Q = \left(2 \frac{1}{2}\sqrt{2}\right)N$.
- 71. F . $3 \sin \theta = 9$ F . $4 \cos \theta = 16$ \Rightarrow F = 5.

72. By Lami's theorem

$$\vec{P} : \vec{Q} : \vec{R} = \sin\left(90^{\circ} + \frac{A}{2}\right) : \sin\left(90^{\circ} + \frac{B}{2}\right) : \sin\left(90^{\circ} + \frac{C}{2}\right)$$
$$\Rightarrow \cos\frac{A}{2} : \cos\frac{B}{2} : \cos\frac{C}{2}.$$

73. Time T₁ from A to B =
$$\frac{12}{4}$$
 = 3 hrs.

$$T_2$$
 from B to C = $\frac{5}{5}$ = 1 hrs.

Average speed =
$$\frac{17}{4}$$
 km/ hr.

Resultant average velocity = $\frac{13}{4}$ km/hr.

74. Component along OB =
$$\frac{\frac{1}{4}\sin 30^{\circ}}{\sin (45^{\circ} + 30^{\circ})} = \frac{1}{8} (\sqrt{6} - \sqrt{2})$$
 m/s.

75.
$$t_1 = \frac{2u\sin\alpha}{g} \,, \, t_2 = \frac{2u\sin\beta}{g} \, \text{ where } \alpha + \beta = 90^0$$

$$\therefore \, t_1^2 + t_2^2 = \frac{4u^2}{g^2} \, .$$