Introduction

The branches of electricity and magnetism were unified by scientists like Oersted, Rowland, Faraday, Maxwell and Lorentz.

The branch of physics covering a combined study of electricity and magnetism i- known as electromagnetism or electrodynamics. It is useful in study of subjects like pla sma ohysics, magneto-hydrodynamics and communication.

5.1 Oersted's Observation

In 1819 A.D., Oersted, a school teacher from Denmark, observ _ th * ${ }^{r}$ agnetic field is produced around a wire carrying electric current. If a conducting vire i kept parallel to the magnetic needle and electric current is passed through it, needle rets deflected and aligns itself perpendicularly to the length of the wire.

5.2 Biot-Savart's Law

The intensity of magnetic field due to a current el ment Idíat a point having position vector \vec{r} with respect to the electric current ele ier s given by the formula

$$
\overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l} \times \hat{r}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l} \times \vec{r}}{r^{3}} \quad \text { a } 1 d \quad \left\lvert\, \overrightarrow{\operatorname{BB} \mid}=\frac{\mu_{0}}{4 \pi} \frac{I d l \sin \theta}{r^{2}}\right.
$$

where $\overrightarrow{d B}=$ magnetic intensit in . sla (T) or weber $/ \mathrm{m}^{2}$,

$$
\overrightarrow{\mathrm{Id}}=\text { current elemer }:
$$ (product of $\mathbf{e}_{1}: \sim . .<$ current and length of small

$$
\text { line le' iet } \overrightarrow{\mathrm{dl}} \text { of the conductor) }
$$

$$
\mu_{0}=n \text { ignetic permeability of vacuum }
$$

$$
=\therefore 10^{-7} \text { tesla metre per ampere }\left(\mathrm{T} \mathrm{~m} \mathrm{~A}^{-1}\right)
$$

$$
r=\text { unit vector along the direction of } \vec{r}=\frac{\vec{r}}{|\vec{r}|}
$$

$$
\text { and } \theta=\text { angle between } \overrightarrow{\mathrm{dl}} \text { and } \overrightarrow{\mathrm{r}}
$$

The direction of $\overrightarrow{d B}$ is perpendicular to the plane formed by $\overrightarrow{\mathrm{dl}}$ and \vec{r}. As $\overrightarrow{\mathrm{dl}}$ and $\overrightarrow{\mathrm{r}}$ are taken in the plane of the figure, the direction of $\overrightarrow{d B}$ is perpendicular to the plane of the figure and going inside it, as shown by \otimes.

On integrating the above equation, we get the total intensity at the point P due to the entire length of the conducting wire as
$\vec{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{\overrightarrow{d l} \times \hat{r}}{r^{2}}$ or $\vec{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{\overrightarrow{d l} \times \vec{r}}{r^{3}}$

5.3 Some Applications of Biot-Savart's Law

5.3 (a) Magnetic field due to a straight conductor carrying electric current

A straight conductor $A B$ carrying electric current I is kept along X-axis as shown in the figure. It is desired to find magnetic intensity at a point P located at a perpendicular distance y from the wire. Y -axis is along OP.

A small current element $I d x i$ is at a distance x from the origin on the wire.

By Biot-Savart's law, magnetic intensity at point P due to this current element is
$\overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d x} \times \vec{r}}{r^{3}}$

Putting $\overrightarrow{d x}=d x \hat{i} \quad$ and $\quad \vec{r}=(\hat{y}-\hat{\mathbf{j}}-\hat{\mathbf{i}})$
(from \triangle OPQ formed by vectors)

$$
\begin{aligned}
& \overrightarrow{d x} \times \vec{r}=d x \hat{i} \times(y \hat{j}-x \hat{i})=, ' x \hat{k} \\
& \therefore \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I y d x \hat{k}}{r^{3}}
\end{aligned}
$$

This field is perpendicular to plane formed by $\overrightarrow{d x}$ and \vec{r} coming out normally from the plane of the figure. Ir egr cing over the whole length of the wire,
$\left.\left.\vec{B}=\int \overrightarrow{d B}=\frac{\mu_{0} I y}{4 \pi} \right\rvert\, \int \frac{u x}{r^{3}}\right] \hat{k}$
From the reor. $r y$ of the figure, $r^{2}=x^{2}+y^{2} \quad \therefore r^{3}=\left(x^{2}+y^{2}\right)^{3 / 2}$

$$
\overrightarrow{3}=\frac{\mu_{0} I y}{4 \pi}\left[\int \frac{d x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}\right] \hat{k}
$$

Putting $x=y \tan \theta, \quad d x=y \sec ^{2} \theta d \theta$ and integrating over the whole length of the wire, i.e., from $\theta=-\theta_{1}$ to $\theta=\theta_{2}$,
$\vec{B}=\frac{\mu_{0} I y}{4 \pi}\left[\int_{-\theta_{1}\left[y^{2} \tan ^{2} \theta+y^{2}\right]^{\frac{3}{2}}}^{\theta_{2}} \frac{y \sec ^{2} \theta d \theta}{\hat{k}}=\frac{\mu_{0} I}{4 \pi y}\left[\int_{-\theta_{1}}^{\theta_{2}} \cos \theta d \theta\right] \hat{k}\right.$
$\therefore \vec{B}=\frac{\mu_{0} I}{4 \pi y}[\sin \theta]_{-\theta_{1}}^{\theta_{2}} \hat{k}=\frac{\mu_{0} I}{4 \pi y}\left[\sin \theta_{2}+\sin \theta_{1}\right] \hat{k}$
If the angles subtended by P at the ends A and B of the wire are α_{1} and α_{2}, then
$\vec{B}=\frac{\mu_{0} I}{4 \pi y}\left[\cos \alpha_{1}+\cos \alpha_{2}\right] \hat{k}=\frac{\mu_{0} I}{4 \pi y}\left[\frac{L_{1}}{\sqrt{y^{2}+L_{1}{ }^{2}}}+\frac{L_{2}}{\sqrt{y^{2}+L_{2}{ }^{2}}}\right] \hat{k}$
If O is the midpoint of the wire, i.e., if $O P$ is the perpendicular bisector $L_{1}=L_{2}=L / 2$,
$\therefore \quad \vec{B}=\frac{\mu_{0} I}{4 \pi y} \frac{2 L}{\sqrt{4 y^{2}+\mathrm{L}^{2}}} \hat{k}$
Putting $\theta_{1}=\theta_{2}=\pi / 2$ for an infinitely long wire,
$\vec{B}=\frac{\mu_{0} I}{2 \pi y} \hat{k}$
To decide the direction of the magnetic field, ris ht da \sim thumb rule can be used. If the wire is held in right hand such that the thumr is it tr \rightleftharpoons direction of the electric current, the fingers encircling the wire indicate the directic of tue magnetic field lines.

5.3 (b) Magnetic Field at Any 'oin. on the Axis

of a Circular Rinc c'in ${ }^{\text {ing }}$ Current:

Consider a point P on th. - is of a ring carrying current I at a distance x from it, ct and having position vector \vec{r} with respect to an ele.. ${ }^{2 n+}$ of length $\overrightarrow{\mathrm{dl}}$ of the ring.

The magnetic $1 . \therefore \overline{d B}$ at the point P, due to the current elemert, $\overrightarrow{\boldsymbol{l}}, \ldots$ in a direction perpendicular to the plane fo*.. \sim 'y $\overrightarrow{j l}$ and \vec{r}. It can be resolved into two mutually pe jenu. دlar components:
(i) $u B \cos \phi$ parallel to X-axis and
(,) $\mathrm{dB} \sin \phi$ perpendicular to X -axis.

All $\mathrm{dB} \sin \phi$ components due to the diametrically opposite elements nullify each other, whereas the axial components $\mathrm{dB} \cos \phi$ add up.
$\therefore d B(x)=|\overrightarrow{d B}| \cos \phi=\left|\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d I} \times \vec{r}}{r^{3}}\right| \cos \phi=\frac{\mu_{0}}{4 \pi} \frac{I d I \cdot r \sin \theta}{r^{3}} \cos \phi$
But $\overrightarrow{\mathrm{dl}} \perp \overrightarrow{\mathrm{r}} \quad \therefore \sin \theta=\sin \frac{\pi}{2}=1 \quad$ and $\cos \phi=\frac{\mathrm{a}}{\mathrm{r}} \quad$ (from the figure)
$\therefore \mathrm{dB}(\mathrm{x})=\frac{\mu_{0 \mathrm{I}}}{4 \pi \mathrm{r}^{2}} \frac{\mathrm{a}}{\mathrm{r}} \mathrm{dl}$
Integrating over the circumference of the ring, the resultant magnetic field at point \mathbf{P} is
$B(x)=\frac{\mu_{0} \text { Ia }}{4 \pi r^{3}} \oint_{\text {ring }} d l=\frac{\mu_{0 \text { Ia }}}{4 \pi r^{3}} 2 \pi a$
From geometry of the figure, $r^{2}=a^{2}+x^{2} \Rightarrow r^{3}=\left(a^{2}+x^{2}\right)^{3 / 2}$

$$
\therefore B(x)=\frac{\mu_{0} \mathrm{Ia}^{2}}{2\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{\frac{3}{2}}}
$$

The direction of the magnetic field is along X -axis givan , th right hand thumb rule. On curling the fingers of right hand in the direction ffow di electric current, the thumb stretching perpendicularly to the plane of the circ. for led by the fingers indicate the direction of the magnetic field.

If the ring consists of \mathbf{N} closely wound turns,
$B(x)=\frac{\mu_{0} N I a^{2}}{2\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}$
Taking $x=0$, magnetic inten ity \boldsymbol{i}. th \geqslant centre of the ring is
$B($ centre $)=\frac{\mu_{0} N I}{2 a}$
For a point far away $\therefore\lrcorner m$ the centre of the coil as compared to its radius, $x \gg a$. Neglecting a^{2} in omp rison to x^{2}, magnetic intensity at a distance x from the centre on the axis of the $a^{\prime}:$
$B(x)=\frac{{ }^{\circ} 0 \mathrm{Nla}^{2}}{2 x^{3}}$
-n ind the direction of the magnetic field on the axis of the ring, curl the fingers of right 'alı. in the direction of flow of electric current. The thumb stretching perpendicularly to the ? me of the circle formed by the fingers indicates the direction of the magnetic field.

5.3 (c) Solenoid:

A helical coil consisting of closely wound turns of insulated conducting wire is called a solenoid.

Fig. 1 represents a cross section along the length of the solenoid. The \times signs indicate the wires going into the paper and the - signs indicate wires coming out of the plane of paper. The axis of the solenoid coincides with X -axis and radius of the solenoid is a . P is a point inside the solenoid on its axis as shown in Fig. 2.

Fig. 1

ig. 2

To find magnetic intensity at P, consider a small part of a s lenoit of width $d x$, at a distance x from point P. It can be regarded as a thin ring. If th. "a are n turns per unit length of the solenoid, there will be ndx number of turr- in this part. Hence magnetic intensity at P due to this ring will be

$$
\mathrm{dB}(x)=\frac{\mu_{0} I a^{2} n d x}{2\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}
$$

From Fig. 2, $x=a \tan \theta, \quad \therefore \quad d x=a \sec ^{2} \rho \cdot \theta \quad a d \quad a^{2}+x^{2}=a^{2}+a^{2} \tan ^{2} \theta=a^{2} \sec ^{2} \theta$
Integrating over the entire length of the soi, noiu, i.e., from $\theta=-\alpha_{1}$ to $\theta=\alpha_{2}$, magnetic intensity at point P is
$B=\int_{-\alpha_{1}}^{\alpha_{2}} \frac{\mu_{0} I a^{2} n\left(a \sec ^{2} \theta\right) d \theta}{2 a^{3} \sec ^{3} \theta} \quad \frac{n I}{2} \int_{-\alpha_{1}}^{\alpha_{2}} \cos \theta d \theta$

$$
=\frac{\mu_{0} n I}{2}[\sin \theta]_{-}^{a} \alpha_{1} \quad \frac{\mu_{0} n I}{2}\left(\sin \alpha_{2}+\sin \alpha_{1}\right)
$$

In terms 0 '. शns'es $\$_{1}$ and ϕ_{2} as shown in Fig. 1,
$B=-\ddots^{n}\left(\cos \phi_{2}+\cos \phi_{1}\right)$
\uparrow, very long solenoid (in principle of infinite length), $\alpha_{1}=\alpha_{2}=\pi / 2$
$\therefore B=\mu_{0} n$, where $n=$ number of turns per unit length of the solenoid.
For a very long solenoid, magnetic field is uniform inside the solenoid and zero outside the solenoid just as for a capacitor of very large plates electric field is uniform in the inner region and zero outside the plates.

Thus a capacitor can be used where a uniform electric field is required and a solenoid is used where uniform magnetic field is required.

5.4 Ampere's Circuital Law

The statement of Ampere's circuital law is:
"The line integral of magnetic induction over a closed loop in a magnetic field is equal to the product of algebraic sum of electric currents enclosed by the loop and '... magnetic permeability."
Mathematically, $\quad \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dI}}=\mu_{0} \Sigma \mathrm{I}$
To decide the sign convention for electric currents, consider the magnetic field loop produced by electric currents as shown in the figure.

Arrange a right-handed screw perpendicular to the plane containing closed magnetic loop and rotate it in the direction of vector line elements taken for line integration. Electric currents in the
 direction of advancement of the screw are cins a, ed positive and the currents in the opposite direction are considered negative.

Hence, algebraic sum of currents enclosf $_$. $v t_{1}$, closed magnetic intensity loop is
$\Sigma \mathrm{I}=\mathrm{I}_{3}+\mathrm{I}_{4}-\mathrm{I}_{1}-\mathrm{I}_{\mathbf{2}}$
Here, currents outside the loo 1 ?e nor to be considered even though they contribute in producing the magnetic field.
(1) To find magnetic field du ... a very long and straight conductor carrying electric current, using Ar eer sic v:

Consider a very long (ir principle infinitely long) straight conductor carryi. \mathfrak{y} electric current I as shown in the figure.

As the wire is II: : itely long, points P, Q and R which are at the same pt. . idicular distance y from it will have the same magne'ic , tensicy. In fact, all points on the loop of radius y passin: . * ugh point Q will have the same magnetic field. If thi mas detic field is \vec{B}, then applying Ampere's law to the - 12
$\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}=\mu_{0} \Sigma \mathrm{I} \Rightarrow \oint \mathrm{Bdl} \cos \theta=\mu_{0} \mathrm{I}$

As \vec{B} and $\overrightarrow{\mathrm{dl}}$ are in the same direction at every element, $\cos \theta=\cos 0=1$.
$\therefore \oint \mathrm{BdI}=\mu_{0} \mathrm{I} \quad \therefore B \oint \mathrm{dl}=\mu_{0} \mathrm{I} \quad$ (as B is constant)
$\therefore B \cdot 2 \pi y=\mu_{0} I \quad \therefore B=\frac{\mu_{0} I}{2 \pi y}$

(2) Formula of a solenoid:

The figure shows the cross-section of a very long solenoid. It is desired to find the magnetic intensity at point S lying inside the solenoid.

Taking line integral over Ampearean loop PQRS shown in the figure,

$$
\oint \vec{B} \cdot \overrightarrow{d l}=\int_{P}^{S} \vec{B} \cdot \overrightarrow{d l}+\int_{S}^{R} \vec{B} \cdot \overrightarrow{d l}+\int_{R}^{Q} \vec{B} \cdot \overrightarrow{d l}+\int_{Q}^{P} \vec{B} \cdot \overrightarrow{d l}
$$

The magnetic field on part PQ of the loop will be zero as it is ing utside the solenoid. Also some part of QR and SP is outside and the part inside is perp. cular to the magnetic field. Hence magnetic field on them is zero.
$\therefore \quad \int_{Q}^{P} \vec{B} \cdot \overrightarrow{d l}=\int_{R}^{Q} \vec{B} \cdot \overrightarrow{d l}=\int_{P}^{S} \vec{B} \cdot \overrightarrow{d l}=0$
$\therefore \quad \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}=\int_{\mathrm{S}}^{\mathrm{R}} \mathrm{Bdl} \cos 0^{\circ}=\mathrm{B} \int_{\mathrm{S}}^{\mathrm{R}} \mathrm{dl}=\mathrm{B} l$
If $\mathbf{n}=$ number of turns per unit length * th. solenoid, then the number of turns passing through the Ampearean loop is $\mathrm{n} l$. Crirent nassing through each turn is I , so total current passing through the loop is $n l \mathrm{I}$.

From Ampere's circuital law, $\oint^{-i} \cdot \overline{\mathrm{~d}^{i}} \cdot \mu_{0} n l \mathrm{I}$
$\therefore B l=\mu_{0} n l \mathrm{and} \quad B=\mu_{0} \mathrm{n}$
This method is valid on', for very long solenoid in which all points inside the solenoid can be considered equival it ar $\boldsymbol{\downarrow}$ is not advisable to use for a solenoid of finite length.

5.5 Toroid

If the sc'el. n is bent in the form of a circle and its two ends -re onneuted to each other then the device is called a toroid. I. . in be prepared by closely winding an insulated crnc.nt.ig wire around a non-conducting hollow ring.
\therefore nagnetic field produced inside the toroid carrying electric - urruat can be obtained using Ampere's circuital law.

To find a magnetic field at a point P inside a toroid which is at a distance r from its centre, consider a circle of radius r with its centre at O as an Amperean loop. By symmetry, the magnitude of the magnetic field at every point on the loop is the same and is directed towards the tangent to the circle.

$$
\therefore \quad \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}=\oint \mathrm{Bdl}=\mathrm{B} \oint \mathrm{dl}=\mathrm{B}(2 \pi r) \ldots \ldots \ldots(1)
$$

If the total number of turns is N and current is I, the total current through the said loop is NI. From Ampere's circuital law,
$\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}=\mu_{0} \mathrm{~N}$ I \ldots....... (2)
Comparing equations (1) and (2), B(2 $\quad \mathrm{rr})=\mu_{0} \mathrm{NI}$
$\therefore \quad B=\frac{\mu_{0} N I}{2 \pi r}=\mu_{0} n I, \quad\left(n=\frac{N}{2 \pi r}\right.$ is the number of turns per unit $r . y_{y}, c$ the toroid $)$
In an ideal toroid, where the turns are completely circular, magnetir $f i$ ' d at the centre and outside the toroid is zero. In practice, the coil is helical and he ce a s...all magnetic field exists outside the toroid.

Toroid is a very important component of Tokamak used for . . `arch in nuclear fusion.

5.6 Force on a current carrying wire placed in - - aar stic field

Ampere showed that "two parallel wires placed mar 'əch other exert an attractive force if they are carrying currents in the same directio, \quad, a repulsive force if they are carrying currents in the opposite directions."

A magnetic field is created around the vire carrying an electric current. If another wire carrying some current is placed in its leig, hol،hood, then it experiences a force. The law giving this force was given by Amper : a. undur. The force acting on a current f^{\prime}, ven, $\overline{\mathrm{d}} \overline{\mathrm{l}}$ due to the magnetic induction \vec{B} is
$\overrightarrow{d F}=I \overrightarrow{d I} \times \vec{B}$
If a straight wire of ler \boldsymbol{f} th l carrying a current I is placed in ? uniforı.. magnetic field \vec{B}, the
 force acting on t e wi? can be given by
$\vec{F}=I \vec{r} \dot{i}$ juch an arrangement is shown in the figure. The direction of force can be determined using the right hand screw rule.
5.E (\because) The formula for the force between two conducting wires placed parallel to each other and carrying currents in the same direction:
`on..der two very long conducting wires placed parallel to sh other along X-axis, separated by a distance y and carrying the currents I_{1} and I_{2} in the same direction as shown in the figure.

Magnetic field at a distance y from the conductor carrying current I_{1} is
$\vec{B}=\frac{\mu_{0} I_{1}}{2 \pi y} \hat{k}$

The strength of this field is the same at all the points of the wire carrying the current I_{1} and is directed along Z -axis. Therefore, the force acting on the second wire over its length l will be

$$
\begin{aligned}
\overrightarrow{\mathrm{F}} & =\mathrm{I}_{2} \vec{l} \times \overrightarrow{\mathrm{B}}=\mathrm{I}_{1} \mathrm{I}_{2} \frac{\mu_{0}}{2 \pi \mathrm{y}} \vec{l} \times \hat{\mathrm{k}}=\mathrm{I}_{1} \mathrm{I}_{2} \frac{\mu_{0}}{2 \pi \mathrm{y}} l \hat{\mathrm{i}} \times \hat{\mathrm{k}} \\
\therefore \overrightarrow{\mathrm{~F}} & =\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}_{1} \mathrm{I}_{2} l}{\mathrm{y}} \hat{\mathrm{j}}
\end{aligned}
$$

The force \vec{F} acts along negative y-direction which indicates that it is at'ac. 'e.

5.6 (b) Definition of ampere

In the equation, $\overrightarrow{\mathrm{F}}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}_{1} \mathrm{I}_{2} l}{\mathrm{y}} \hat{\mathrm{j}}$, if $\mathrm{I}_{1}=\mathrm{I}_{2}=1 \mathrm{~A}, \quad \mathrm{v}=1 \mathrm{~m}$ and $l=1 \mathrm{~m}$, then
$|\vec{F}|=\frac{\mu_{0}}{2 \pi}=\frac{4 \pi \times 10^{-7}}{2 \pi}=2 \times 10^{-7} \mathrm{~N}$
Based on this, SI definition of 1 ampere curent is rive as inder:
When the magnetic force acting per meter $\|_{\mathrm{S}} \mathrm{th}$ in no infinitely long wires of negligible cross-sectional area placed parallel to each " ver :" = distance of 1 meter in vacuum carrying identical currents is $2 \times 10^{-7} \mathrm{~N}$, the curr . pa sing through each wire is 1 ampere.

5.7 Force on an electric charg^ mı ing in a magnetic field: Lorentz Force

The current I flowing through a cor . 'ctor of cross-sectional area \mathbf{A} is given by
$I=n A v_{d} q$, where $q=c t$ arge \ldots the positively charged particle, $\mathrm{n}=\mathrm{nt}$ in. c of free charge carriers per unit volume of the conductor, v_{d}. dr t velocity.
$\therefore \quad \mathrm{I} \overrightarrow{\mathrm{dl}}=\mathrm{qnA} \mathrm{v}_{\mathrm{d}} \overrightarrow{\mathrm{dl}} \sim \cap A \overrightarrow{\mathbf{v}_{\mathrm{d}}} \mathbf{d l} \quad\left(\because \mathrm{v}_{\mathrm{d}}\right.$ and dl are in the same direction $)$
When this cc tuc or is placed in a magnetic field of intensity \vec{B}, the force acting on it is $\overrightarrow{d F}=I \vec{I}_{\lambda} \bar{R}=q n A d I\left(\overrightarrow{v_{d}} \times \vec{B}\right)$

But n, a_{1} total number of charged particles on the current element
\therefore 'he nagnetic force acting on a charged particle of charge q is given by
$\xrightarrow[,]{\rightarrow}=\frac{\overrightarrow{d F}}{n A d l}=\frac{q n A d l\left(\overrightarrow{v_{d}} \times \vec{B}\right)}{n A d l}=q\left(\overrightarrow{v_{d}} \times \vec{B}\right)$
The magnetic force acting on a charge moving through a magnetic field is perpendicular to the velocity of the particle. Work done by this force is zero and hence the kinetic energy of the particle remains constant. Only the direction of velocity goes on changing at every instant. If an electric field \vec{E} is also present alongwith \vec{B}, the resultant force acting on the charged particle will be
$\vec{F}=\overrightarrow{F_{e}}+\overrightarrow{F_{m}}=q\left[\vec{E}+\overrightarrow{v_{d}} \times \vec{B}\right]$. This force is known as Lorentz Force.

5.8 Cyclotron

Scientists E. O. Lawrence and M. S. Livingston constructed the first cyclotron in 1934 A. D. which is used to accelerate charged particles.

To understand how a cyclotron works, consider the motion of a positively charged particle moving with velocity $\overrightarrow{\mathbf{v}}$ and entering perpendicularly uniform magnetic field of intensity \vec{B} as shown in the figure.

The force acting on the charged particle is
$\vec{F}=q(\vec{v} \times \vec{B})=q v B \sin \theta=q v B(\because \sin \theta=\pi / 2)$

Under the effect of this force, the charged particle perforl... uniform circular motion in a plane perpendicular to the plane formed by v and B .
$\therefore q v B=\frac{m v^{2}}{r}$ and $r=\frac{m v}{q B}=\frac{p}{q B}$,
where p is the linear momentum of the :hars ${ }^{\prime} d$ particle.
Putting $v=r \omega_{c}$, where ω_{c} is callea 'he a.igular frequency of the cyclotron,
$r=\frac{m r \omega_{c}}{q B} \quad \therefore \quad \omega_{c}=\frac{q B}{m} \quad$ a d $\quad t_{c}=\frac{q B}{2 \pi m}$
The equation shows ino th frequency does not depend on the momentum. Hence on increasing momentur, it he particle, the radius of its circular path increases but its frequency does not. T_{1}, it is used in the design of the cyclotron.

The figure st ws side view and top view of a cyclotron.
Construc. 3 In.
Two D in. . d boxes are kept with tr ? a , nall sap as shown in the figure. - 'I iform magnetic field is developed \therefore use space enveloped by the two - xes with a strong electromagnet. These two boxes are called Dees as they are D-shaped.

An A.C. of high frequency is applied between the two Dees. The device is kept in an evacuated chamber in order to avoid the collision of charged particles with the air molecules.

Side View of Cyclotron

Top View of Cyclotron

Working:

A positively charged particle is released at the centre P of the gap at time $t=0$. It gets attracted towards the Dee which is at a negative potential at that time. It enters the uniform magnetic field between the Dees perpendicularly and performs uniform circular motion in the gap. As there is no electric field inside the Dees, it moves on a circular path of radius depending upon its momentum and comes out of the Dee after completing a half cir 'e.

As the frequency of A.C. (f_{A}) is equal to f_{c}, the diameter of the oppos. ? De , becomes negative when the particle emerges from one Dee and attracts it with a b, ich increases its momentum. The particle then enters the other Dee with larger velo ity a.d nence moves on a circular path of larger radius. This process keeps on repeatinn a d tr : particle gains momentum and hence radius of its circular path goes on inc easing wat the frequency remains the same. Thus the charged particle goes on gainin. ent gy which becomes maximum on reaching the circumference of the Dee.

When the particle is at the edge, it is deflected with t^{\prime} e '.el', of another magnetic field, brought out and allowed to hit the target.

Such accelerated particles are used in the study of r.cleal reactions, preparation of artificial radioactive substances, treatment of cancer and in npin..ation in solids.

Limitations:

- According to the theory of relativity as vel. sity of the particle approaches that of light, its mass goes on increasing. In f^{\prime}, s situai. Jn , the condition of resonance ($f_{A}=f_{c}$) is not satisfied.
- To accelerate very light par iclf; 'ike electrons, A.C. of very high frequency (of the order of GHz) is required.
- It is difficult to maint 'II' a uniform magnetic field over large sized Dees. Hence accelerators like $\boldsymbol{\varepsilon}$,nc oto 1 are developed.
5.9 Torque ctinc on a rectangular coil, carrying electric current and suspenc:-1 a uniform magnetic field:

One turn if rt. ngular coil has length, $Q R=l$ and width, $P Q=b$
(see … i)
$M_{1} \mathrm{gnc}_{c}:$ field taken along X-axis is $\vec{B}=B \hat{i}$
ι^{-}acting on side $P Q$ forming current element
$\vec{\jmath}$ is $\quad \overrightarrow{F_{1}}=I \vec{b} \times \vec{B}$
Similarly, force acting on side RS forming current element $-I \vec{b}$ is $\overrightarrow{F_{1}}=-I \vec{b} \times \vec{B}$
The forces $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{1}^{\prime}}$ are equal in magnitude, opposite in direction and collinear. Hence, they cancel each other.

Fig. 1

Now, force acting on side QR forming current element $-I l \hat{j}$ is $\overrightarrow{F_{2}}=-I l \hat{j} \times B \hat{i}=I l B \hat{k}$
Similarly, force acting on side SP forming current element $I l \hat{j}$ is $\overrightarrow{F_{2}^{\prime}}=I l \hat{\mathbf{j}} \times \hat{B} \hat{\mathbf{i}}$

$$
=-\mathrm{I} l \mathrm{~B} \hat{\mathrm{k}}
$$

The forces $\overrightarrow{F_{2}}$ and $\overrightarrow{F_{2}}{ }^{\prime}$ are equal in magnitude, opposite in direction but are ion- ollinear. So they give rise to a torque (couple).

Fig. 2 shows the top view . . $\operatorname{le} \boldsymbol{n}^{\prime}$; Here \vec{A} is the area vector of the coil whi h ma es an angle θ with the magnetic intensity \vec{B} along n-axis.

By definition, magnit dr oí torque (couple)
$=$ magnitude of a for $\geq \times$ perpendicular distance between the two forces
$\therefore|\vec{\tau}|=\left|\bar{z}_{2}^{-}\right| \quad \lambda^{\prime} N^{\prime}$

$$
=1.3 \sin \theta
$$

- $\|^{\prime}=N \mathrm{I} l \mathrm{~b} B \sin \theta$ (for a coil having N turns)

Expressing area A of the coil in vech, fort.

$$
\begin{aligned}
\vec{\tau} & =N_{I} \vec{A} \times \vec{B} \\
& =\vec{\mu} \times \vec{B}, \text { where } \vec{\mu}=N \vec{A} \text {, called the "magnetic moment" linked with the coil. }
\end{aligned}
$$

This equation is valir for a \mathbf{c} il of any other shape. The direction of torque is along \mathbf{Y}-axis. The direction of magnt :n . oment, $\overrightarrow{\boldsymbol{\mu}}$, can be determined using the right hand screw rule.

5.10 Galvaı - nt 'er

A galvan mell is a device used to detect current. With . .rc riate modification, it can be converted into an ${ }^{\prime}$ mı ett. which can measure currents of the order ol an - pere or milliammeter to measure currents in 'he range of milliamperes or microammeter to measure nic ampere currents.

Cunstruction:

A light rectangular frame on which a coil of thin copper wire is wound is pivoted between two almost frictionless pivots and placed between cylindrical poles of a permanent magnet, so that it can freely rotate in the region between the poles. The poles are suitably shaped and a small soft iron cylindrical core is placed at the axis of the coil (free from the coil) to obtain uniform magnetic field.

When the current is passed through the coil, a torque acts on it and is deflected. This deflection causes the restoring torque in the spiral springs attached at the two ends of the coil and the coil attains a steady deflection. The pointer attached to the coil moves on a scale and indicates the current.

Principle and Working

The torque developed in the coil due to the current passing through it is give . ."
$\tau=$ NIAB $\sin \theta$, where $N=$ number of turns in the coil,
$\mathrm{I}=$ current through the coil,
$A=$ area of the coil,
$B=$ magnetic intensity of the field and
$\theta=$ angle between area vector of th coil and the direction of magnetic intensity
As the magnetic field is radial, angle between \vec{A} and \vec{B}, 气。 ir any position of the coil and $\sin 90^{\circ}$ being 1 ,

$$
\tau=\text { NIAB }
$$

The restoring torque produced in the springs $i^{\prime} d_{\text {l }}$ `ctı proportional to the deflection ϕ of the coil.
$\therefore \tau$ (restoring) $=\mathbf{k} \phi, \quad$ where $k=$ effective torsic al constant of the springs.
For steady deflection ϕ, \quad NIAB $=\mathbf{k}_{\boldsymbol{*}}$
$\therefore I=\left[\frac{k}{N A B}\right] \phi \quad$ or, $I \propto \phi$
The scale of the galvanomete ca b' appropriately calibrated to measure the current.
To measure very we .. urr nts of the order of $10^{-11} \mathrm{~A}$, the galvanometers with coils suspended by an ela: tic it e oetween appropriately designed magnetic poles are used.

5.11 Orbita' mi ne ic moment of an electron revolving in an orbit of an atom

The mas 'et. 'ipole moment of the loop of area A carrying currer ${ }^{\prime}$ I given by
$N_{1}={ }^{*}$ (per turn)
1 ' electron is revolving in an orbit of radius r with frequency 1. it will pass through a point of its orbit f times in one s. cond. In this case, the charge passing through that point in one second is ef where $e=$ charge of an electron. This constitutes an electric current
$\mathrm{I}=$ ef. Taking $\mathrm{A}=\pi \mathrm{r}^{2}$,

$$
\begin{aligned}
M & =e f\left(\pi r^{2}\right) \\
\therefore \quad M & =\frac{e \omega \pi r^{2}}{2 \pi}=\frac{e \omega r^{2}}{2}=\frac{e m \omega r^{2}}{2 m}=\frac{e}{2 m} l
\end{aligned}
$$

5-MAGNETIC EFFECTS OF ELECTRIC CURRENT AND MAGNETISM Page 14

where $l=m \omega r^{2}=$ angular momentum of electron and $\mathrm{m}=$ mass of an electron.

Expressing in vector form,
$\overrightarrow{\mathrm{M}}=-\left(\frac{\mathrm{e}}{2 \mathrm{~m}}\right) \vec{l}$

Here $\overrightarrow{\mathbf{M}}$ and \vec{l} are in mutually opposite directions according to the ght anः screw rule. Hence, negative sign appears in the above equation.

The ratio $\frac{e}{2 m}$ is a constant called the gyro-magnetic ratio and its , lue s
$8.8 \times{ }^{10}{ }^{10} \mathrm{C} \mathrm{kg}^{-1}$.

